Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 42(1): 203, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563605

RESUMO

BACKGROUND: TP53, encoding the tumor suppressor p53, is frequently mutated in various cancers, producing mutant p53 proteins (mutp53) which can exhibit neomorphic, gain-of-function properties. The latter transform p53 into an oncoprotein that promotes metastatic tumor progression via downstream effectors such as ENTPD5, an endoplasmic reticulum UDPase involved in the calnexin/calreticulin cycle of N-glycoprotein biosynthesis. Elucidating the mechanisms underlying the pro-metastatic functions of the mutp53-ENTPD5 axis is crucial for developing targeted therapies for aggressive metastatic cancer. METHODS: We analyzed pancreatic, lung, and breast adenocarcinoma cells with p53 missense mutations to study the impact of mutp53 and ENTPD5 on the N-glycoproteins integrin-α5 (ITGA5) and integrin-ß1 (ITGB1), which heterodimerize to form the key fibronectin receptor. We assessed the role of the mutp53-ENTPD5 axis in integrin-dependent tumor-stroma interactions and tumor cell motility using adhesion, migration, and invasion assays, identifying and validating therapeutic intervention targets. We employed an orthotopic xenograft model of pancreatic ductal adenocarcinoma to examine in vivo targeting of mutp53-ENTPD5-mediated ITGA5 regulation for cancer therapy. RESULTS: Mutp53 depletion diminished ITGA5 and ITGB1 expression and impaired tumor cell adhesion, migration, and invasion, rescued by ENTPD5. The mutp53-ENTPD5 axis maintained ITGA5 expression and function via the calnexin/calreticulin cycle. Targeting this axis using ITGA5-blocking antibodies, α-glucosidase inhibitors, or pharmacological degradation of mutp53 by HSP90 inhibitors, such as Ganetespib, effectively inhibited ITGA5-mediated cancer cell motility in vitro. In the orthotopic xenograft model, Ganetespib reduced ITGA5 expression and metastasis in an ENTPD5-dependent manner. CONCLUSIONS: The mutp53-ENTPD5 axis fosters ITGA5 and ITGB1 expression and tumor cell motility through the calnexin/calreticulin cycle, contributing to cancer metastasis. ITGA5-blocking antibodies or α-glucosidase inhibitors target this axis and represent potential therapeutic options worth exploring in preclinical models. The pharmacologic degradation of mutp53 by HSP90 inhibitors effectively blocks ENTPD5-ITGA5-mediated cancer cell motility and metastasis in vivo, warranting further clinical evaluation in p53-mutant cancers. This research underscores the significance of understanding the complex interplay between mutp53, ENTPD5, and the calnexin/calreticulin cycle in integrin-mediated metastatic tumor progression, offering valuable insights for the development of potential therapeutic strategies.


Assuntos
Adenocarcinoma , Antineoplásicos , Animais , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Calnexina/genética , Calnexina/metabolismo , Integrina alfa5/metabolismo , Calreticulina/metabolismo , Anticorpos Bloqueadores/metabolismo , Inibidores de Glicosídeo Hidrolases , Linhagem Celular Tumoral , Chaperonas Moleculares/metabolismo , Modelos Animais de Doenças , Pirofosfatases/metabolismo , Proteínas Oncogênicas/metabolismo
2.
Eur J Neurosci ; 53(12): 3905-3919, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32333816

RESUMO

Fras1 is an extracellular protein of the basement membranes that surround embryonic epithelia, choroid plexuses and meninges in foetal mouse brain. Depletion of Fras1 in knockout mice results in sub-epidermal blistering and fusion of eyelids and digits as well as malformation of lungs and kidneys. Mutations in the human counterpart FRAS1 are responsible for the Fraser Syndrome with clinical manifestations similar to the murine phenotype. In addition, brain deformities or mental impairments have occasionally been reported in patients with Fraser Syndrome. In the present study, we explored the possible involvement of Fras1 in brain function, analysing its expression pattern in mouse brain and investigating aspects of Fras1-/- mice behaviour, related to the function of brain regions expressing Fras1. Transcripts were detected in choroid plexuses and in certain brain regions including cortical, hippocampal and amygdalar areas in juvenile mice. Behavioural tests revealed that Fras1-/- mice exhibit impaired egocentric spatial memory, aberrant olfactory learning and memory, markedly reduced fear memory in an auditory fear conditioning task, as well as reduced anxiety expression in open field and elevated plus maze tests. Moreover, the extracellular matrix organization has been severely affected in cortical and subcortical areas as demonstrated by Wisteria floribunda agglutinin immunolabelling. The widespread detection of Fras1 transcripts in the brain of both pre- and postnatal mice, as well as the behavioural and cellular disturbances exhibited by Fras1-/- adult mice provide evidence for the involvement of Fras1 in brain organization and function.


Assuntos
Comportamento Animal , Epiderme , Proteínas da Matriz Extracelular , Animais , Membrana Basal , Proteínas da Matriz Extracelular/genética , Medo , Aprendizagem , Camundongos , Camundongos Knockout , Fenótipo , Memória Espacial
3.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348923

RESUMO

Tumor progression to a metastatic and ultimately lethal stage relies on a tumor-supporting microenvironment that is generated by reciprocal communication between tumor and stromal host cells. The tumor-stroma crosstalk is instructed by the genetic alterations of the tumor cells-the most frequent being mutations in the gene Tumor protein p53 (TP53) that are clinically correlated with metastasis, drug resistance and poor patient survival. The crucial mediators of tumor-stroma communication are tumor-derived extracellular vesicles (EVs), in particular exosomes, which operate both locally within the primary tumor and in distant organs, at pre-metastatic niches as the future sites of metastasis. Here, we review how wild-type and mutant p53 proteins control the secretion, size, and especially the RNA and protein cargo of tumor-derived EVs. We highlight how EVs extend the cell-autonomous tumor suppressive activity of wild-type p53 into the tumor microenvironment (TME), and how mutant p53 proteins switch EVs into oncogenic messengers that reprogram tumor-host communication within the entire organism so as to promote metastatic tumor cell dissemination.


Assuntos
Comunicação Celular , Vesículas Extracelulares/metabolismo , Neoplasias/patologia , Microambiente Tumoral , Proteína Supressora de Tumor p53/metabolismo , Animais , Humanos , Metástase Neoplásica , Neoplasias/metabolismo
4.
Mol Oncol ; 14(9): 2142-2162, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32533757

RESUMO

A hallmark of ovarian high-grade serous carcinoma (HGSC) is its early and massive peritoneal dissemination via the peritoneal fluid. It is generally believed that tumor cells must breach the mesothelium of peritoneal organs to adhere to the underlying extracellular matrix (ECM) and initiate metastatic growth. However, the molecular mechanisms underlying these processes are only partially understood. Here, we have analyzed 52 matched samples of spheroids and solid tumor masses (suspected primary lesions and metastases) from 10 patients by targeted sequencing of 21 loci previously proposed as targets of HGSC driver mutations. This analysis revealed very similar patterns of genetic alterations in all samples. One exception was FAT3 with a strong enrichment of mutations in metastases compared with presumed primary lesions in two cases. FAT3 is a putative tumor suppressor gene that codes for an atypical cadherin, pointing a potential role in peritoneal dissemination in a subgroup of HGSC patients. By contrast, transcriptome data revealed clear and consistent differences between tumor cell spheroids from ascites and metastatic lesions, which were mirrored by the in vitro adherence of ascites-derived spheroids. The adhesion-induced transcriptional alterations in metastases and adherent cells resembled epithelial-mesenchymal transition, but surprisingly also included the upregulation of a specific subset of mesothelial genes, such as calretinin (CALB2) and podoplanin (PDPN). Consistent with this finding, calretinin staining was also observed in subsets of tumor cells in HGSC metastases, particularly at the invasive tumor edges. Intriguingly, a high expression of either CALB2 or PDPN was strongly associated with a poor clinical outcome. siRNA-mediated CALB2 silencing triggered the detachment of adherent HGSC cells in vitro and inhibited the adhesion of detached HGSC cells to collagen type I. Our data suggest that the acquisition of a mesenchymal-mesothelial phenotype contributes to cancer cell adhesion to the ECM of peritoneal organs and HGSC progression.


Assuntos
Epitélio/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Regulação para Cima/genética , Apoptose/genética , Ascite/genética , Ascite/patologia , Biomarcadores Tumorais/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologia , Intervalo Livre de Doença , Feminino , Humanos , Gradação de Tumores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Peritoneais/secundário , Polimorfismo de Nucleotídeo Único/genética , Esferoides Celulares/patologia , Resultado do Tratamento
5.
Biomolecules ; 10(2)2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-32075247

RESUMO

p53 suppresses tumorigenesis by activating a plethora of effector pathways. While most of these operate primarily inside of cells to limit proliferation and survival of incipient cancer cells, many extend to the extracellular space. In particular, p53 controls expression and secretion of numerous extracellular factors that are either soluble or contained within extracellular vesicles such as exosomes. As part of the cellular secretome, they execute key roles in cell-cell communication and extracellular matrix remodeling. Mutations in the p53-encoding TP53 gene are the most frequent genetic alterations in cancer cells, and therefore, have profound impact on the composition of the tumor cell secretome. In this review, we discuss how the loss or dominant-negative inhibition of wild-type p53 in concert with a gain of neomorphic properties observed for many mutant p53 proteins, shapes a tumor cell secretome that creates a supportive microenvironment at the primary tumor site and primes niches in distant organs for future metastatic colonization.


Assuntos
Matriz Extracelular/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Carcinogênese/genética , Comunicação Celular/genética , Comunicação Celular/fisiologia , Transformação Celular Neoplásica/metabolismo , Exossomos/genética , Exossomos/metabolismo , Genes p53/genética , Humanos , Mutação/genética , Neoplasias/metabolismo , Microambiente Tumoral/genética
6.
EMBO J ; 38(20): e102096, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31483066

RESUMO

Engineered p53 mutant mice are valuable tools for delineating p53 functions in tumor suppression and cancer therapy. Here, we have introduced the R178E mutation into the Trp53 gene of mice to specifically ablate the cooperative nature of p53 DNA binding. Trp53R178E mice show no detectable target gene regulation and, at first sight, are largely indistinguishable from Trp53-/- mice. Surprisingly, stabilization of p53R178E in Mdm2-/- mice nevertheless triggers extensive apoptosis, indicative of residual wild-type activities. Although this apoptotic activity suffices to trigger lethality of Trp53R178E ;Mdm2-/- embryos, it proves insufficient for suppression of spontaneous and oncogene-driven tumorigenesis. Trp53R178E mice develop tumors indistinguishably from Trp53-/- mice and tumors retain and even stabilize the p53R178E protein, further attesting to the lack of significant tumor suppressor activity. However, Trp53R178E tumors exhibit remarkably better chemotherapy responses than Trp53-/- ones, resulting in enhanced eradication of p53-mutated tumor cells. Together, this provides genetic proof-of-principle evidence that a p53 mutant can be highly tumorigenic and yet retain apoptotic activity which provides a survival benefit in the context of cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Leucemia Mieloide Aguda/prevenção & controle , Linfoma/prevenção & controle , Mutação , Proteínas Proto-Oncogênicas c-mdm2/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinogênese/patologia , Ciclo Celular , Modelos Animais de Doenças , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Linfoma/genética , Linfoma/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Tumorais Cultivadas
7.
Oncol Rep ; 37(3): 1579-1592, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28184912

RESUMO

A misbalance between proliferation and differentiation of neural stem cells in niches for adult brain neurogenesis is a key mechanism in glioma pathogenesis. In the adult brain, the expression of Pax6 marks stem cells in the forebrain neurogenic niche. We analyzed the expression profile of the two active in vertebrates Pax6 isoforms, Pax6 and Pax6-5a, along with the expression of microRNA cluster miR-183-96-182 in a large set of glioma patient specimens and glioma cell lines which showed opposite expression level, low and high, respectively, with the progression of tumor malignancy. Our results from biochemical and in vitro studies in glioma cell lines disclosed a specific regulation of the PAX6-5a isoform by miR-183. Mechanistically, we show that the downregulation of the lipid kinase SPHK1 by both PAX6 isoforms and the simultaneous induction of CTNDD2 expression, specifically by PAX6-5a, results in reduced glioma cell survival, decreased migration and invasion and increased cell death, in glioma cell lines. Taken together, our findings point towards the important role of PAX6 and define PAX6-5a as a new essential player in glioma development. Finally, we propose that the expression level of TFs PAX6/PAX6-5a and miR-183-96-182 may potentially serve as prognostic markers for the progression of glioma tumors from low- to high-grade with a potential to identify new therapeutic approaches.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , MicroRNAs/metabolismo , Fator de Transcrição PAX6/metabolismo , Adulto , Algoritmos , Apoptose , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proliferação de Células , Progressão da Doença , Feminino , Imunofluorescência , Glioma/genética , Glioma/metabolismo , Humanos , Masculino , MicroRNAs/genética , Fator de Transcrição PAX6/genética , Isoformas de Proteínas , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
8.
Proc Natl Acad Sci U S A ; 113(52): E8433-E8442, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-27956623

RESUMO

Mutations in the p53 tumor suppressor gene are the most frequent genetic alteration in cancer and are often associated with progression from benign to invasive stages with metastatic potential. Mutations inactivate tumor suppression by p53, and some endow the protein with novel gain of function (GOF) properties that actively promote tumor progression and metastasis. By comparative gene expression profiling of p53-mutated and p53-depleted cancer cells, we identified ectonucleoside triphosphate diphosphohydrolase 5 (ENTPD5) as a mutant p53 target gene, which functions as a uridine 5'-diphosphatase (UDPase) in the endoplasmic reticulum (ER) to promote the folding of N-glycosylated membrane proteins. A comprehensive pan-cancer analysis revealed a highly significant correlation between p53 GOF mutations and ENTPD5 expression. Mechanistically, mutp53 is recruited by Sp1 to the ENTPD5 core promoter to induce its expression. We show ENTPD5 to be a mediator of mutant p53 GOF activity in clonogenic growth, architectural tissue remodeling, migration, invasion, and lung colonization in an experimental metastasis mouse model. Our study reveals folding of N-glycosylated membrane proteins in the ER as a mechanism underlying the metastatic progression of tumors with mutp53 that could provide new possibilities for cancer treatment.


Assuntos
Retículo Endoplasmático/metabolismo , Metástase Neoplásica , Proteínas Oncogênicas/metabolismo , Pirofosfatases/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/fisiologia , Animais , Apoptose , Calnexina/metabolismo , Calreticulina/metabolismo , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Glicoproteínas/metabolismo , Glicosilação , Humanos , Masculino , Camundongos , Proteínas Mutantes/genética , Proteínas Mutantes/fisiologia , Mutação , Invasividade Neoplásica , Prognóstico , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fator de Transcrição Sp1/metabolismo
9.
Cell Mol Life Sci ; 71(17): 3199-218, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24614969

RESUMO

The mammalian neocortex is a sheet of cells covering the cerebrum that provides the structural basis for the perception of sensory inputs, motor output responses, cognitive function, and mental capacity of primates. Recent discoveries promote the concept that increased cortical surface size and thickness in phylogenetically advanced species is a result of an increased generation of neurons, a process that underlies higher cognitive and intellectual performance in higher primates and humans. Here, we review some of the advances in the field, focusing on the diversity of neocortical progenitors in different species and the cellular mechanisms of neurogenesis. We discuss recent views on intrinsic and extrinsic molecular determinants, including the role of epigenetic chromatin modifiers and microRNA, in the control of neuronal output in developing cortex and in the establishment of normal cortical architecture.


Assuntos
Neocórtex/crescimento & desenvolvimento , Animais , Divisão Celular , Polaridade Celular , Montagem e Desmontagem da Cromatina , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Mamíferos/crescimento & desenvolvimento , MicroRNAs/fisiologia , Neocórtex/anatomia & histologia , Proteínas do Tecido Nervoso/fisiologia , Células-Tronco Neurais/citologia , Neurogênese , Neurônios/citologia , Tamanho do Órgão , Processamento Pós-Transcricional do RNA , Transdução de Sinais , Especificidade da Espécie
10.
Cereb Cortex ; 24(3): 754-72, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23180754

RESUMO

Scratch genes (Scrt) are neural-specific zinc-finger transcription factors (TFs) with an unknown function in the developing brain. Here, we show that, in addition to the reported expression of mammalian Scrt2 in postmitotic differentiating and mature neurons in the developing and early postnatal brain, Scrt2 is also localized in subsets of mitotic and neurogenic radial glial (RGP) and intermediate (IP) progenitors, as well as in their descendants-postmitotic IPs and differentiating neurons at the border subventricular/intermediate zone. Conditional activation of transgenic Scrt2 in cortical progenitors in mice promotes neuronal differentiation by favoring the direct mode of neurogenesis of RGPs at the onset of neurogenesis, at the expense of IP generation. Neuronal amplification via indirect IP neurogenesis is thereby extenuated, leading to a mild postnatal reduction of cortical thickness. Forced in vivo overexpression of Scrt2 suppressed the generation of IPs from RGPs and caused a delay in the radial migration of upper layer neurons toward the cortical plate. Mechanistically, our results indicate that Scrt2 negatively regulates the transcriptional activation of the basic helix loop helix TFs Ngn2/NeuroD1 on E-box containing common target genes, including Rnd2, a well-known major effector for migrational defects in developing cortex. Altogether, these findings reveal a modulatory role of Scrt2 protein in cortical neurogenesis and neuronal migration.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Movimento Celular/genética , Neocórtex/fisiologia , Neurogênese/genética , Neurônios/fisiologia , Fatores de Transcrição/genética , Animais , Animais Recém-Nascidos , Linhagem Celular Transformada , Células Cultivadas , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Neocórtex/citologia , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição/metabolismo , Xenopus , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
11.
Histochem Cell Biol ; 140(5): 595-601, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24101214

RESUMO

The Fras1/Frem family of extracellular matrix proteins consists of Fras1 and its structurally related proteins, Frem1 (Fras1-related extracellular matrix protein 1), Frem2 and Frem3. These are co-localized in embryonic epithelial basement membranes (BMs), where they contribute to epithelial-mesenchymal adhesion. Although Fras1 localization pattern in epithelial BMs has been well defined, it has not yet been comprehensively studied in the central nervous system. Here, we demonstrate the immunohistochemical profile of Fras1 in the developing mouse brain and reveal an exclusively meningeal BM protein deposition. Interestingly, Fras1 displays a segmental localization pattern, which is restricted to certain regions of the meningeal BM. Frem2 protein displays a similar localization pattern, while Frem3 is rather uniformly distributed throughout the meningeal BM. Fras1 and Frem2 proteins are detected in regions of the BM that underlie organizing centers, such as the roof plate (RP) of diencephalon, midbrain and hindbrain, and the RP-derived structures of telencephalon (choroid plexus and hem). Organizing centers exert their activity via the production of bioactive molecules, which are potential Fras1 ligands. The restricted pattern of Fras1 and Frem2 proteins indicates a molecular compartmentalization of the meningeal BM that could reflect, yet unspecified, functional and structural differences.


Assuntos
Membrana Basal/química , Membrana Basal/crescimento & desenvolvimento , Proteínas da Matriz Extracelular/análise , Meninges/química , Meninges/crescimento & desenvolvimento , Animais , Membrana Basal/ultraestrutura , Feminino , Imuno-Histoquímica , Meninges/ultraestrutura , Camundongos , Camundongos Endogâmicos , Microscopia Eletrônica de Varredura , Gravidez
12.
Int J Biochem Cell Biol ; 43(4): 487-95, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21182980

RESUMO

Basement membranes constitute architecturally complex extracellular matrix (ECM) protein networks of great structural and regulatory importance. Recently, a novel group of basement membrane proteins, Fras1 (Fraser syndrome protein (1) and the Fras1-related extracellular matrix proteins Frem1, Frem2 and Frem3, has emerged. They comprise components of the sublamina densa region and contribute to embryonic epithelial-mesenchymal integrity. Fras1/Frem share common polypeptide repetitive motifs with possible interactive and organizing functions. Mutations in genes encoding Fras1, Frem1 and Frem2 are causative for dermal-epidermal detachment in the plane of sublamina densa and have been identified in different classes of mouse bleb mutants, the murine model of human Fraser syndrome, the hallmark phenotypic characteristics of which are embryonic skin blistering, cryptophthalmos and renal agenesis. Indeed, defects in FRAS1 and FREM2 have been identified in Fraser syndrome patients. The phenotypic similarity of mouse bleb mutant strains can be attributed to the fact that Fras1, Frem1 and Frem2 have been experimentally shown to interact, forming a mutually stabilized protein complex, while Frem3, which has not yet been associated with any of the existing known mutations, operates in a more independent fashion. Fras1/Frem have been recently proposed to compensate for the activity of collagen VII, a major anchoring component of the sublamina densa, the levels of which rise only during late embryonic life. By focusing on the aforementioned data, in this review we will summarize the current knowledge about Fraser syndrome proteins and describe their contribution to basement membrane biology.


Assuntos
Membrana Basal/metabolismo , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/metabolismo , Animais , Colágeno Tipo VII/metabolismo , Doença , Proteínas da Matriz Extracelular/genética , Humanos , Mutação , Fenótipo
13.
Appl Immunohistochem Mol Morphol ; 16(5): 503-6, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18580494

RESUMO

Fras1/Frem family of basement membrane proteins has been associated with the "bleb" phenotype in mouse and the Fraser syndrome in man. Fras1 and Frem2 proteins are known to be colocalized in all epithelial basement membranes during embryonic development. The functional significance of their colocalization has been demonstrated in the corresponding mouse mutants, where the absence of Fras1 results in complete depletion of Frem2 from epithelial basement membranes and vice versa. Nevertheless, under standard immunohistochemical procedures, we were able to detect Fras1, but not Frem2, in the basement membrane of adult mouse tail skin. After reevaluation of our protocol, we established 15-minute acidic buffer treatment to be of critical value upon Frem2 immunodetection, essentially operating as an antigen retrieval process. Testing more polyclonal antibodies revealed no negative effects, but rather reinforced the positive signal, rendering this technique suitable for incorporation to any standard immunohistochemical procedure.


Assuntos
Antígenos , Crioultramicrotomia , Formaldeído , Polímeros , Fixação de Tecidos , Animais , Antígenos/imunologia , Antígenos/metabolismo , Membrana Basal/embriologia , Membrana Basal/imunologia , Membrana Basal/metabolismo , Proteínas da Matriz Extracelular/deficiência , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/imunologia , Proteínas da Matriz Extracelular/metabolismo , Concentração de Íons de Hidrogênio , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Pele/embriologia , Pele/imunologia , Pele/metabolismo
14.
Matrix Biol ; 26(8): 652-8, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17596926

RESUMO

The Fraser syndrome protein Fras1 and the structurally related proteins Frem1, Frem2 and Frem3 comprise a novel family of extracellular matrix proteins implicated in the structural adhesion of the embryonic epidermis to the underlying mesenchyme. Fras1, Frem1 and Frem2 have been shown to be simultaneously and interdependently stabilized in the basement membrane by forming a ternary complex located underneath the lamina densa. However, the functional relationships between Frem3 and the other Fras1/Frem proteins remain unknown. Here we show that in the absence of Fras1 the basement membrane localization of Frem3 remains unaffected in contrast to Frem1 and Frem2 which are completely abolished from the basement membrane. This indicates that although Frem3 is localized in the sublamina densa similar to Fras1, Frem1 and Frem2 yet it is anchored in the basement membrane independently. We further demonstrate that loss of Fras1 results in the accumulation of Frem2 within epithelial cells. This finding reveals that Fras1 is not only essential as a component of a macromolecular complex for the extracellular stabilization of Frem2 but it is also required for its proper intracellular trafficking and export from embryonic epithelial cells.


Assuntos
Membrana Basal/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Animais , Membrana Basal/embriologia , Células Epiteliais/metabolismo , Proteínas da Matriz Extracelular/deficiência , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/ultraestrutura , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Microscopia Imunoeletrônica , Mutação/genética , Ligação Proteica , Pele/metabolismo
15.
Gene Expr Patterns ; 7(4): 381-8, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17251066

RESUMO

The Fras1/Frem gene family encodes for structurally similar, developmentally regulated extracellular matrix proteins. Mutations in Fras1, Frem1 and Frem2 have been identified in different classes of mouse bleb mutants, while defects in the human orthologs FRAS1 and FREM2 are causative for Fraser syndrome. The hallmark phenotypic feature of bleb mice is embryonic skin blistering due to dermal-epidermal detachment. The similarity of the phenotypic characteristics among the bleb mouse mutants, together with the fact that Fras1/Frem proteins are co-localized in embryonic epithelial basement membranes, suggest that they operate in a common pathway. Here, we report for the first time the immunofluorescence pattern of Frem3 and provide a comparative analysis of the spatiotemporal localization of all Fras1/Frem proteins during mouse embryonic development. We demonstrate their overall co-localization in embryonic epithelial basement membranes, with emphasis on areas of phenotypic interest such as eyelids, limbs, kidneys, lungs and organs of the gastrointestinal tract and the central nervous system. We further studied collagen VII, impairment of which produces dystrophic epidermolysis bullosa, a postnatal skin blistering disorder. We show that basement membrane levels of collagen VII rise at late embryonic life, concomitant with descending Fras1/Frem immunolabeling.


Assuntos
Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Proteínas da Matriz Extracelular/análise , Animais , Membrana Basal/embriologia , Membrana Basal/metabolismo , Colágeno Tipo VII/genética , Desenvolvimento Embrionário/genética , Epitélio/embriologia , Epitélio/metabolismo , Proteínas da Matriz Extracelular/genética , Camundongos , Camundongos Mutantes , Fenótipo , Pele/embriologia , Pele/metabolismo
16.
J Pharm Pharm Sci ; 10(4): 464-72, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18261368

RESUMO

PURPOSE: Drug release profiles were established for ibuprofen encapsulated within several types of microspheres and a range of dissolution buffer media to study the effect these variables have in controlling the rate and extent of drug release. METHODS: Fatty acid microspheres containing ibuprofen were prepared by a process previously developed and refined to produce microspheres of a known size and composition, namely 80-125 mum diameter and an excipient to ibuprofen ratio of 3:1. Drug release profiles from these encapsulated formulations were compared with those obtained for the dissolution of ibuprofen alone under the same conditions. RESULTS: Stearic acid microspheres were found to only partially retard the release of ibuprofen over a twenty minute period compared with the dissolution of ibuprofen alone. However, a significant retardation of ibuprofen release was observed with cetostearyl alcohol microspheres over the same period of time. Secondly, drug release profiles for encapsulated ibuprofen were determined using five distinct dissolution buffer media; sodium phosphate, potassium phosphate, citric acid and phosphate mix, MOPS and tris. Significant differences in the extent and rate of drug release were recorded between the different dissolution buffer solutions. These differences were also shown to be independent of variations in pH, temperature, buffer concentrations and the type of cations present. CONCLUSIONS: The presence and choice of microsphere formulation, and the choice of buffer present in the dissolution solution, can influence drug release in vitro, i.e. it is possible to achieve controlled drug release from microspheres. To explain the control achieved through the choice of buffer in solution it is proposed that the buffer anion exerts a stabilising influence on the ibuprofen-microsphere matrix.


Assuntos
Preparações de Ação Retardada/química , Microesferas , Preparações Farmacêuticas/química , Química Farmacêutica/métodos , Preparações de Ação Retardada/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Tamanho da Partícula , Preparações Farmacêuticas/administração & dosagem , Solubilidade , Propriedades de Superfície
17.
J Biol Chem ; 280(11): 10350-6, 2005 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-15623520

RESUMO

Fras1 is a putative extracellular matrix protein that has been implicated in the structural adhesion of embryonic epidermis to dermis. Moreover, mutations in Fras1/FRAS1 have been associated with the mouse blebbed phenotype and the human rare genetic disorder Fraser syndrome, respectively. Here we report the mapping of Fras1 within the extracellular space and evaluate the effects of Fras1 deficiency on lung development in the mouse. Expression of Fras1 was detected in the mesothelial cells of the visceral pleura and in the conducting airway epithelia. Immunogold histochemistry identified Fras1 as a component of the extracellular matrix localized below the lamina densa of epithelial basement membranes in the embryonic lung. Embryos homozygous for a targeted mutation of Fras1 exhibited fused pulmonary lobes resulting from incomplete separation during development as well as a profound disarrangement of blood capillaries in the terminal air sacs. We demonstrate that loss of Fras1 causes alterations in the molecular composition of basement membranes, concomitant with local disruptions of epithelial-endothelial contacts and extravasation of erythrocytes into the embryonic respiratory lumen. Thus, our findings identify Fras1 as an important structural component of the sub-lamina densa of basement membranes required for lobar septation and the organization of blood capillaries in the peripheral lung.


Assuntos
Membrana Basal/metabolismo , Capilares/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Animais , Adesão Celular , Embrião de Mamíferos/metabolismo , Células Epiteliais/citologia , Epitélio/metabolismo , Eritrócitos/metabolismo , Matriz Extracelular/metabolismo , Homozigoto , Imuno-Histoquímica , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Pulmão/patologia , Pulmão/ultraestrutura , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Mutação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...