Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Alcohol ; 80: 91-98, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30291947

RESUMO

Alcohol exposure is associated with decreased mucociliary clearance, a key innate defense essential to lung immunity. Previously, we identified that prolonged alcohol exposure results in dysfunction of airway cilia that persists at the organelle level. This dysfunction is characterized by a loss of 3',5'-cyclic adenosine monophosphate (cAMP)-mediated cilia stimulation. However, whether or not ciliary dysfunction develops intrinsically at the organelle level has not been explored. We hypothesized that prolonged alcohol exposure directly to isolated demembranated cilia (axonemes) causes ciliary dysfunction. To test this hypothesis, we exposed isolated axonemes to alcohol (100 mM) for 1-24 h and assessed ciliary beat frequency (CBF) in response to cAMP at 1, 3, 4, 6, and 24 h post-exposure. We found that after 1 h of alcohol exposure, cilia axonemes do not increase CBF in response to cAMP. Importantly, by 6 h after the initial exposure to alcohol, cAMP-mediated CBF was restored to control levels. Additionally, we found that thioredoxin reverses ciliary dysfunction in axonemes exposed to alcohol. Finally, we identified, using a combination of a xanthine oxidase oxidant-generating system, direct application of hydrogen peroxide, and electron paramagnetic resonance, that hydrogen peroxide versus superoxide, is likely the key oxidant species driving alcohol-induced ciliary dysfunction in isolated axonemes. These data highlight the role of alcohol to stimulate local production of oxidants in the axoneme to cause ciliary dysfunction. Additionally, these data specifically add hydrogen peroxide as a potential therapeutic target in the treatment or prevention of alcohol-associated ciliary dysfunction and subsequent pneumonia.


Assuntos
Cílios/efeitos dos fármacos , AMP Cíclico/farmacologia , Etanol/farmacologia , Animais , Axonema/efeitos dos fármacos , Bovinos , Relação Dose-Resposta a Droga , Espectroscopia de Ressonância de Spin Eletrônica , Peróxido de Hidrogênio/metabolismo , Depuração Mucociliar/efeitos dos fármacos , Tiorredoxinas/farmacologia
2.
Sci Rep ; 8(1): 9701, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29946131

RESUMO

Alcohol use disorder (AUD) is a strong risk factor for development and mortality of pneumonia. Mucociliary clearance, a key innate defense against pneumonia, is perturbed by alcohol use. Specifically, ciliated airway cells lose the ability to increase ciliary beat frequency (CBF) to ß-agonist stimulation after prolonged alcohol exposure. We previously found that alcohol activates protein phosphatase 1 (PP1) through a redox mechanism to cause ciliary dysfunction. Therefore, we hypothesized that PP1 activity is enhanced by alcohol exposure through an S-nitrosothiol-dependent mechanism resulting in desensitization of CBF stimulation. Bronchoalveolar S-nitrosothiol (SNO) content and tracheal PP1 activity was increased in wild-type (WT) mice drinking alcohol for 6-weeks compared to control mice. In contrast, alcohol drinking did not increase SNO content or PP1 activity in nitric oxide synthase 3-deficient mice. S-nitrosoglutathione induced PP1-dependent CBF desensitization in mouse tracheal rings, cultured cells and isolated cilia. In vitro expression of mutant PP1 (cysteine 155 to alanine) in primary human airway epithelial cells prevented CBF desensitization after prolonged alcohol exposure compared to cells expressing WT PP1. Thus, redox modulation in the airways by alcohol is an important ciliary regulatory mechanism. Pharmacologic strategies to reduce S-nitrosation may enhance mucociliary clearance and reduce pneumonia prevalence, mortality and morbidity with AUD.


Assuntos
Cílios/metabolismo , Cílios/patologia , Etanol/toxicidade , Proteína Fosfatase 1/metabolismo , Animais , Axonema/metabolismo , Líquido da Lavagem Broncoalveolar/química , Bovinos , Células Cultivadas , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Proteína Fosfatase 1/genética , S-Nitrosotióis/metabolismo
3.
Am J Physiol Lung Cell Mol Physiol ; 312(3): L432-L439, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28062487

RESUMO

Individuals with alcohol (ethanol)-use disorders are at increased risk for lung infections, in part, due to defective mucociliary clearance driven by motile cilia in the airways. We recently reported that isolated, demembranated bovine cilia (axonemes) are capable of producing nitric oxide (∙NO) when exposed to biologically relevant concentrations of alcohol. This increased presence of ∙NO can lead to protein S-nitrosylation, a posttranslational modification signaling mechanism involving reversible adduction of nitrosonium cations or ∙NO to thiolate or thiyl radicals, respectively, of proteins forming S-nitrosothiols (SNOs). We quantified and compared SNO content between isolated, demembranated axonemes extracted from bovine tracheae, with or without in situ alcohol exposure (100 mM × 24 h). We demonstrate that relevant concentrations of alcohol exposure shift the S-nitrosylation status of key cilia regulatory proteins, including 20-fold increases in S-nitrosylation of proteins that include protein phosphatase 1 (PP1). With the use of an ATP-reactivated axoneme motility system, we demonstrate that alcohol-driven S-nitrosylation of PP1 is associated with PP1 activation and dysfunction of axoneme motility. These new data demonstrate that alcohol can shift the S-nitrothiol balance at the level of the cilia organelle and highlight S-nitrosylation as a novel signaling mechanism to regulate PP1 and cilia motility.


Assuntos
Cílios/patologia , Etanol/toxicidade , Proteína Fosfatase 1/metabolismo , Traqueia/patologia , Traqueia/fisiopatologia , Animais , Axonema/efeitos dos fármacos , Axonema/metabolismo , Bovinos , Cílios/efeitos dos fármacos , Nitrosação , Oxirredução/efeitos dos fármacos , Proteoma/metabolismo , Traqueia/efeitos dos fármacos
5.
Alcohol ; 55: 35-42, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27788776

RESUMO

Alcohol-use disorders (AUD) persist in the United States and are heavily associated with an increased susceptibility to respiratory viral infections. Respiratory syncytial virus (RSV) in particular has received attention as a viral pathogen commonly detected in children and immune-compromised populations (elderly, asthmatics), yet more recently was recognized as an important viral pathogen in young adults. Our study evaluated the exacerbation of RSV-associated illness in mice that chronically consumed alcohol for 6 weeks prior to infection. Prior studies showed that lung viral titers remained elevated in these animals, leading to a hypothesis that T-cell activation and immune specificity were deficient in controlling viral spread and replication in the lungs. Herein, we confirm a reduction in RSV-specific IFNγ production by CD8 T cells and a depolarization of Th1 (CD4+IFNγ+) and Th2 (CD4+IL-4+) T cells at day 5 after RSV infection. Furthermore, over the course of viral infection (day 1 to day 7 after RSV infection), we detected a delayed influx of neutrophils, monocytes/macrophages, and lymphocytes into the lungs. Taken together, the data show that both the early and late adaptive immunity to RSV infection are altered by chronic ethanol consumption. Future studies will determine the interactions between the innate and adaptive immune systems to delineate therapeutic targets for individuals with AUD often hospitalized by respiratory infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Etanol/toxicidade , Imunidade Celular/imunologia , Vírus Sinciciais Respiratórios/imunologia , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Etanol/administração & dosagem , Feminino , Imunidade Celular/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Distribuição Aleatória , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Carga Viral/efeitos dos fármacos , Carga Viral/imunologia
6.
Mol Biol Cell ; 26(18): 3140-9, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26224312

RESUMO

Motile cilia and flagella play critical roles in fluid clearance and cell motility, and dysfunction commonly results in the pediatric syndrome primary ciliary dyskinesia (PCD). CFAP221, also known as PCDP1, is required for ciliary and flagellar function in mice and Chlamydomonas reinhardtii, where it localizes to the C1d projection of the central microtubule apparatus and functions in a complex that regulates flagellar motility in a calcium-dependent manner. We demonstrate that the genes encoding the mouse homologues of the other C. reinhardtii C1d complex members are primarily expressed in motile ciliated tissues, suggesting a conserved function in mammalian motile cilia. The requirement for one of these C1d complex members, CFAP54, was identified in a mouse line with a gene-trapped allele. Homozygous mice have PCD characterized by hydrocephalus, male infertility, and mucus accumulation. The infertility results from defects in spermatogenesis. Motile cilia have a structural defect in the C1d projection, indicating that the C1d assembly mechanism requires CFAP54. This structural defect results in decreased ciliary beat frequency and perturbed cilia-driven flow. This study identifies a critical role for CFAP54 in proper assembly and function of mammalian cilia and flagella and establishes the gene-trapped allele as a new model of PCD.


Assuntos
Cílios/fisiologia , Proteínas do Citoesqueleto/genética , Proteínas/fisiologia , Animais , Movimento Celular/fisiologia , Chlamydomonas reinhardtii/metabolismo , Cílios/metabolismo , Flagelos/genética , Flagelos/metabolismo , Flagelos/fisiologia , Infertilidade Masculina/genética , Síndrome de Kartagener , Masculino , Camundongos , Microtúbulos/genética , Dados de Sequência Molecular , Proteínas/genética , Proteínas/metabolismo , Espermatogênese/genética
7.
Am J Physiol Lung Cell Mol Physiol ; 308(6): L577-85, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25575517

RESUMO

Airway mucociliary clearance is a first-line defense of the lung against inhaled particles and debris. Among individuals with alcohol use disorders, there is an increase in lung diseases. We previously identified that prolonged alcohol exposure impairs mucociliary clearance, known as alcohol-induced ciliary dysfunction (AICD). Cilia-localized enzymes, known as the ciliary metabolon, are key to the pathogenesis of AICD. In AICD, cyclic nucleotide-dependent ciliary kinases, which modulate phosphorylation to regulate cilia beat, are desensitized. We hypothesized that alcohol activates cilia-associated protein phosphatase 1 (PP1) activity, driving phosphorylation changes of cilia motility regulatory proteins. To test this hypothesis we identified the effects of prolonged alcohol exposure on phosphatase activity, cilia beat, and kinase responsiveness and cilia-associated phosphorylation targets when stimulated by ß-agonist or cAMP. Prolonged alcohol activated PP1 and blocked cAMP-dependent cilia beat and protein kinase A (PKA) responsiveness and phosphorylation of a 29-kDa substrate of PKA. Importantly, prolonged alcohol-induced phosphatase activation was inhibited by the PP1 specific inhibitor, inhibitor-2 (I-2), restoring cAMP-stimulated cilia beat and PKA responsiveness and phosphorylation of the 29-kDa substrate. The I-2 inhibitory effect persisted in tissue, cell, and isolated cilia-organelle models, highlighting the association of ciliary metabolon-localized enzymes to AICD. Prolonged alcohol exposure drives ciliary metabolon-localized PP1 activation. PP1 activation modifies phosphorylation of a 29-kDa protein related to PKA activity. These data reinforce our previous findings that alcohol is acting at the level of the ciliary metabolon to cause ciliary dysfunction and identifies PP1 as a therapeutic target to prevent or reverse AICD.


Assuntos
Transtornos Relacionados ao Uso de Álcool/metabolismo , Etanol/efeitos adversos , Proteína Fosfatase 1/metabolismo , Mucosa Respiratória/metabolismo , Doenças Respiratórias/metabolismo , Transtornos Relacionados ao Uso de Álcool/patologia , Animais , Cílios/metabolismo , Cílios/patologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Etanol/farmacologia , Camundongos , Fosforilação/efeitos dos fármacos , Mucosa Respiratória/patologia , Doenças Respiratórias/induzido quimicamente , Doenças Respiratórias/patologia
8.
Am J Physiol Lung Cell Mol Physiol ; 306(2): L162-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24213915

RESUMO

The mechanisms for the development of bronchiectasis and airway hyperreactivity have not been fully elucidated. Although genetic, acquired diseases and environmental influences may play a role, it is also possible that motile cilia can influence this disease process. We hypothesized that deletion of a key intraflagellar transport molecule, IFT88, in mature mice causes loss of cilia, resulting in airway remodeling. Airway cilia were deleted by knockout of IFT88, and airway remodeling and pulmonary function were evaluated. In IFT88(-) mice there was a substantial loss of airway cilia on respiratory epithelium. Three months after the deletion of cilia, there was clear evidence for bronchial remodeling that was not associated with inflammation or apparent defects in mucus clearance. There was evidence for airway epithelial cell hypertrophy and hyperplasia. IFT88(-) mice exhibited increased airway reactivity to a methacholine challenge and decreased ciliary beat frequency in the few remaining cells that possessed cilia. With deletion of respiratory cilia there was a marked increase in the number of club cells as seen by scanning electron microscopy. We suggest that airway remodeling may be exacerbated by the presence of club cells, since these cells are involved in airway repair. Club cells may be prevented from differentiating into respiratory epithelial cells because of a lack of IFT88 protein that is necessary to form a single nonmotile cilium. This monocilium is a prerequisite for these progenitor cells to transition into respiratory epithelial cells. In conclusion, motile cilia may play an important role in controlling airway structure and function.


Assuntos
Hiper-Reatividade Brônquica/patologia , Bronquiectasia/patologia , Cílios/patologia , Cílios/fisiologia , Transtornos da Motilidade Ciliar/patologia , Animais , Hiper-Reatividade Brônquica/fisiopatologia , Bronquiectasia/fisiopatologia , Broncoconstritores/farmacologia , Transtornos da Motilidade Ciliar/fisiopatologia , Modelos Animais de Doenças , Cloreto de Metacolina/farmacologia , Camundongos , Camundongos Knockout , Depuração Mucociliar/fisiologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/patologia , Mucosa Respiratória/fisiopatologia , Proteínas Supressoras de Tumor/genética
9.
Pulm Med ; 2013: 291375, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24349778

RESUMO

Background. Vest chest physiotherapy (VCPT) enhances airway clearance in cystic fibrosis (CF) by an unknown mechanism. Because cilia are sensitive to nitric oxide (NO), we hypothesized that VCPT enhances clearance by changing NO metabolism. Methods. Both normal subjects and stable CF subjects had pre- and post-VCPT airway clearance assessed using nasal saccharin transit time (NSTT) followed by a collection of exhaled breath condensate (EBC) analyzed for NO metabolites (NO x ). Results. VCPT shorted NSTT by 35% in normal and stable CF subjects with no difference observed between the groups. EBC NO x concentrations decreased 68% in control subjects after VCPT (before = 115 ± 32 µ M versus after = 37 ± 17 µ M; P < 0.002). CF subjects had a trend toward lower EBC NO x . Conclusion. We found an association between VCPT-stimulated clearance and exhaled NO x levels in human subjects. We speculate that VCPT stimulates clearance via increased NO metabolism.

10.
Alcohol ; 47(8): 629-35, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24169090

RESUMO

Previously we have shown that chronic alcohol intake causes alcohol-induced ciliary dysfunction (AICD), leading to non-responsive airway cilia. AICD likely occurs through the downregulation of nitric oxide (NO) and cyclic nucleotide-dependent kinases, protein kinase G (PKG) and protein kinase A (PKA). Studies by others have shown that dietary supplementation with the antioxidants N-acetylcysteine (NAC) and procysteine prevent other alcohol-induced lung complications. This led us to hypothesize that dietary supplementation with NAC or procysteine prevents AICD. To test this hypothesis, C57BL/6 mice drank an alcohol/water solution (20% w/v) ad libitum for 6 weeks and were concurrently fed dietary supplements of either NAC or procysteine. Ciliary beat frequency (CBF) was measured in mice tracheas, and PKG/PKA responsiveness to ß-agonists and NOx levels were measured from bronchoalveolar lavage (BAL) fluid. Long-term alcohol drinking reduced CBF, PKG and PKA responsiveness to ß-agonists, and lung NOx levels in BAL fluid. In contrast, alcohol-drinking mice fed NAC or procysteine sustained ciliary function and PKG and PKA responsiveness to ß-agonists. However, BAL NO levels remained low despite antioxidant supplementation. We also determined that removal of alcohol from the drinking water for as little as 1 week restored ciliary function, but not PKG and PKA responsiveness to ß-agonists. We conclude that dietary supplementation with NAC or procysteine protects against AICD. In addition, alcohol removal for 1 week restores cilia function independent of PKG and PKA activity. Our findings provide a rationale for the use of antioxidants to prevent damage to airway mucociliary functions in chronic alcohol-drinking individuals.


Assuntos
Acetilcisteína/uso terapêutico , Antioxidantes/uso terapêutico , Transtornos da Motilidade Ciliar/induzido quimicamente , Transtornos da Motilidade Ciliar/prevenção & controle , Suplementos Nutricionais , Etanol/toxicidade , Ácido Pirrolidonocarboxílico/uso terapêutico , Tiazolidinas/uso terapêutico , Acetilcisteína/administração & dosagem , Acetilcisteína/análise , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Animais , Líquido da Lavagem Broncoalveolar/química , Cílios/efeitos dos fármacos , Cílios/fisiologia , Transtornos da Motilidade Ciliar/dietoterapia , Transtornos da Motilidade Ciliar/fisiopatologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Feminino , Camundongos , Procaterol/farmacologia , Ácido Pirrolidonocarboxílico/administração & dosagem , Espécies Reativas de Nitrogênio/análise , Tiazolidinas/administração & dosagem , Traqueia/metabolismo
11.
Alcohol Clin Exp Res ; 37(4): 609-15, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23078267

RESUMO

BACKGROUND: Cilia are finger-like motor-driven organelles, which propel inhaled particles and mucus from the lung and airways. We have previously shown that brief alcohol exposure stimulates ciliary motility through an endothelial nitric oxide synthase (eNOS)-dependent pathway localized in the ciliary metabolon. However, the signaling molecules of the ciliary metabolon involved in alcohol-triggered ciliary beat frequency (CBF) stimulation upstream of eNOS activation remain unknown. METHODS: We hypothesized that brief alcohol exposure alters threonine and serine phosphorylation of proteins involved in stimulating CBF. Two-dimensional electrophoresis indicated both increases and decreases in the serine and threonine phosphorylation states of several proteins. One of the proteins identified was heat shock protein 90 (HSP90), which undergoes increased threonine phosphorylation after brief alcohol exposure. Because HSP90 has been shown to associate with eNOS in lung tissue, we hypothesized that HSP90 is a key component in alcohol-triggered eNOS activation and that these 2 proteins co-localize within the ciliary metabolon. RESULTS: Immunofluorescence experiments demonstrate that eNOS and HSP90 co-localize within basal bodies of the ciliary metabolon and partially translocate to the axoneme upon brief alcohol exposure. Pretreatment with geldanamycin, which disrupts HSP90 chaperone functions, prevented eNOS-HSP90 association and prevented the translocation of eNOS from the ciliary metabolon to the axoneme. Functional cilia motility studies revealed that geldanamycin blocked alcohol-stimulated ciliary motility in bovine bronchial epithelial cells and mouse tracheal rings. CONCLUSIONS: On the basis of the HSP90 localization with eNOS, alcohol activation of HSP90 phosphorylation, and geldanamycin's ability to inhibit HSP90-eNOS association, prevent eNOS translocation to the axoneme, and block alcohol-stimulated ciliary motility, we conclude that alcohol-induced cilia stimulation occurs through the increased association of HSP90 with eNOS. These data help further elucidate the mechanism through which brief alcohol exposure stimulates CBF.


Assuntos
Axonema/fisiologia , Cílios/fisiologia , Etanol/administração & dosagem , Proteínas de Choque Térmico HSP90/fisiologia , Óxido Nítrico Sintase Tipo III/fisiologia , Proteômica/métodos , Animais , Axonema/enzimologia , Bovinos , Células Cultivadas , Cílios/enzimologia , Sistemas de Liberação de Medicamentos , Proteínas de Choque Térmico HSP90/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos
12.
Cytoskeleton (Hoboken) ; 69(1): 22-32, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22021175

RESUMO

Protein kinase A (PKA) signaling is targeted by interactions with A-kinase anchoring proteins (AKAPs) via a dimerization/docking domain on the regulatory (R) subunit of PKA. Four other mammalian proteins [AKAP-associated sperm protein (ASP), ropporin (ROPN1), sperm protein 17 (SP17) and calcium binding tyrosine-(Y)-phosphorylation regulated protein (CABYR)] share this highly conserved RII dimerization/docking (R2D2) domain. ASP and ROPN1 are 41% identical in sequence, interact with a variety of AKAPs in a manner similar to PKA, and are expressed in ciliated and flagellated human cells. To test the hypothesis that these proteins regulate motility, we developed mutant mouse lines lacking ASP or ROPN1. Both mutant lines produced normal numbers of cilia with intact ciliary ultrastructure. Lack of ROPN1 had no effect on ciliary motility. However, the beat frequency of cilia from mice lacking ASP is significantly slower than wild type, indicating that ASP signaling may regulate ciliary motility. This is the first demonstration of in vivo function for ASP. Similar localization of ASP in mice and humans indicates that these findings may translate to human physiology, and that these mice will be an excellent model for future studies related to the pathogenesis of human disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/deficiência , Cílios/metabolismo , Proteínas de Membrana/deficiência , Proteínas rho de Ligação ao GTP/deficiência , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Genótipo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Mutantes , Dados de Sequência Molecular , Transdução de Sinais , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/metabolismo , Espermatozoides/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo
13.
Biol Reprod ; 85(4): 690-701, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21715716

RESUMO

Primary ciliary dyskinesia (PCD) results from defects in motile cilia function. Mice homozygous for the mutation big giant head (bgh) have several abnormalities commonly associated with PCD, including hydrocephalus, male infertility, and sinusitis. In the present study, we use a variety of histopathological and cell biological techniques to characterize the bgh phenotype, and we identify the bgh mutation using a positional cloning approach. Histopathological, immunofluorescence, and electron microscopic analyses demonstrate that the male infertility results from shortened flagella and disorganized axonemal and accessory structures in elongating spermatids and mature sperm. In addition, there is a reduced number of elongating spermatids during spermatogenesis and mature sperm in the epididymis. Histological analyses show that the hydrocephalus is characterized by severe dilatation of the lateral ventricles and that bgh sinuses have an accumulation of mucus infiltrated by neutrophils. In contrast to the sperm phenotype, electron microscopy demonstrates that mutant respiratory epithelial cilia are ultrastructurally normal, but video microscopic analysis shows that their beat frequency is lower than that of wild-type cilia. Through a positional cloning approach, we identified two sequence variants in the gene encoding sperm flagellar protein 2 (SPEF2), which has been postulated to play an important role in spermatogenesis and flagellar assembly. A causative nonsense mutation was validated by Western blot analysis, strongly suggesting that the bgh phenotype results from the loss of SPEF2 function. Taken together, the data in this study demonstrate that SPEF2 is required for cilia function and identify a new genetic cause of PCD in mice.


Assuntos
Transtornos da Motilidade Ciliar/fisiopatologia , Infertilidade Masculina/patologia , Proteínas/fisiologia , Animais , Sequência de Bases , Transtornos da Motilidade Ciliar/patologia , Epididimo/metabolismo , Epididimo/ultraestrutura , Hidrocefalia/fisiopatologia , Infertilidade Masculina/metabolismo , Masculino , Sinusite Maxilar/imunologia , Sinusite Maxilar/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Dados de Sequência Molecular , Infiltração de Neutrófilos , Proteínas/química , Proteínas/genética , Mucosa Respiratória/fisiopatologia , Mucosa Respiratória/ultraestrutura , Cauda do Espermatozoide/metabolismo , Cauda do Espermatozoide/ultraestrutura , Espermátides/metabolismo , Espermátides/ultraestrutura , Espermatogênese , Espermatozoides/metabolismo , Espermatozoides/ultraestrutura , Traqueia/fisiopatologia , Traqueia/ultraestrutura
14.
Am J Respir Cell Mol Biol ; 43(6): 635-40, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20042711

RESUMO

Exposure to cigarette smoke is associated with airway epithelial mucus cell hyperplasia and a decrease in cilia and ciliated cells. Few models have addressed the long-term effects of chronic cigarette smoke exposure on ciliated epithelial cells. Our previous in vitro studies showed that cigarette smoke decreases ciliary beat frequency (CBF) via the activation of protein kinase C (PKC). We hypothesized that chronic cigarette smoke exposure in an in vivo model would decrease airway epithelial cell ciliary beating in a PKC-dependent manner. We exposed C57BL/6 mice to whole-body cigarette smoke 2 hours/day, 5 days/week for up to 1 year. Tracheal epithelial cell CBF and the number of motile cells were measured after necropsy in cut tracheal rings, using high-speed digital video microscopy. Tracheal epithelial PKC was assayed according to direct kinase activity. At 6 weeks and 3 months of smoke exposure, the baseline CBF was slightly elevated (~1 Hz) versus control mice, with no change in ß-agonist-stimulated CBF between control mice and cigarette smoke-exposed mice. By 6 months of smoke exposure, the baseline CBF was significantly decreased (2-3 Hz) versus control mice, and a ß-agonist failed to stimulate increased CBF. The loss of ß-agonist-increased CBF continued at 9 months and 12 months of smoke exposure, and the baseline CBF was significantly decreased to less than one third of the control rate. In addition to CBF, ciliated cell numbers significantly decreased in response to smoke over time, with a significant loss of tracheal ciliated cells occurring between 6 and 12 months. In parallel with the slowing of CBF, significant PKC activation from cytosol to the membrane of tracheal epithelial cells was detected in mice exposed to smoke for 6-12 months.


Assuntos
Cílios/patologia , Células Epiteliais/patologia , Fumar/efeitos adversos , Acetilação , Animais , Cílios/enzimologia , Células Epiteliais/enzimologia , Feminino , Imuno-Histoquímica , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Proteína Quinase C/metabolismo , Fatores de Tempo , Traqueia/metabolismo , Traqueia/patologia , Tubulina (Proteína)/metabolismo
15.
Alcohol Clin Exp Res ; 33(4): 610-6, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19183138

RESUMO

BACKGROUND: Lung mucociliary clearance provides the first line of defense from lung infections and is impaired in individuals who consume heavy amounts of alcohol. Previous studies have demonstrated that this alcohol-induced ciliary dysfunction occurs through impairment of nitric oxide (NO) and cyclic nucleotide-dependent kinase-signaling pathways in lung airway ciliated epithelial cells. Recent studies have established that all key elements of this alcohol-driven signaling pathway co-localize to the apical surface of the ciliated cells with the basal bodies. These findings led us to hypothesize that alcohol activates the cilia stimulation pathway at the organelle level. To test this hypothesis we performed experiments exposing isolated demembranated cilia (isolated axonemes) to alcohol and studied the effect of alcohol-stimulated ciliary motility on the pathways involved with isolated axoneme activation. METHODS: Isolated demembranated cilia were prepared from bovine trachea and activated with adenosine triphosphate. Ciliary beat frequency, NO production, adenylyl and guanylyl cyclase activities, cAMP- and cGMP-dependent kinase activities were measured following exposure to biologically relevant concentrations of alcohol. RESULTS: Alcohol rapidly stimulated axoneme beating 40% above baseline at very low concentrations of alcohol (1 to 10 mM). This activation was specific to ethanol, required the synthesis of NO, the activation of soluble adenylyl cyclase (sAC), and the activation of both cAMP- and cGMP-dependent kinases (PKA and PKG), all of which were present in the isolated organelle preparation. CONCLUSIONS: Alcohol rapidly and sequentially activates the eNOS-->NO-->GC-->cGMP-->PKG and sAC-->cAMP--> PKA dual signaling pathways in isolated airway axonemes. These findings indicate a direct effect of alcohol on airway cilia organelle function and fully recapitulate the alcohol-driven activation of cilia known to exist in vivo and in intact lung ciliated cells in vitro following brief moderate alcohol exposure. Furthermore, these findings indicate that airway cilia are exquisitely sensitive to the effects of alcohol and substantiate a key role for alcohol in the alterations of mucociliary clearance associated with even low levels of alcohol intake. We speculate that this same axoneme-based alcohol activation pathway is down regulated following long-term high alcohol exposure and that the isolated axoneme preparation provides an excellent model for studying the mechanism of alcohol-mediated cilia dysfunction.


Assuntos
Adenilil Ciclases/metabolismo , Axonema/efeitos dos fármacos , Cílios/efeitos dos fármacos , Proteínas Quinases Reguladas por Nucleotídeo Cíclico/metabolismo , Etanol/farmacologia , Guanilato Ciclase/metabolismo , Óxido Nítrico/metabolismo , Traqueia/efeitos dos fármacos , Animais , Axonema/fisiologia , Bovinos , Cílios/fisiologia , Transtornos da Motilidade Ciliar/metabolismo , Transtornos da Motilidade Ciliar/fisiopatologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Modelos Animais de Doenças , Transdução de Sinais/fisiologia , Traqueia/fisiologia
16.
Mol Cell Biol ; 28(3): 949-57, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18039845

RESUMO

Primary ciliary dyskinesia (PCD) results from ciliary dysfunction and is commonly characterized by sinusitis, male infertility, hydrocephalus, and situs inversus. Mice homozygous for the nm1054 mutation develop phenotypes associated with PCD. On certain genetic backgrounds, homozygous mutants die perinatally from severe hydrocephalus, while mice on other backgrounds have an accumulation of mucus in the sinus cavity and male infertility. Mutant sperm lack mature flagella, while respiratory epithelial cilia are present but beat at a slower frequency than wild-type cilia. Transgenic rescue demonstrates that the PCD in nm1054 mutants results from the loss of a single gene encoding the novel primary ciliary dyskinesia protein 1 (Pcdp1). The Pcdp1 gene is expressed in spermatogenic cells and motile ciliated epithelial cells. Immunohistochemistry shows that Pcdp1 protein localizes to sperm flagella and the cilia of respiratory epithelial cells and brain ependymal cells in both mice and humans. This study demonstrates that Pcdp1 plays an important role in ciliary and flagellar biogenesis and motility, making the nm1054 mutant a useful model for studying the molecular genetics and pathogenesis of PCD.


Assuntos
Cílios/química , Síndrome de Kartagener/genética , Proteínas/fisiologia , Cauda do Espermatozoide/química , Animais , Encéfalo/citologia , Proteínas de Ligação a Calmodulina , Epêndima/química , Células Epiteliais/química , Genótipo , Humanos , Imuno-Histoquímica , Síndrome de Kartagener/etiologia , Masculino , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Especificidade de Órgãos , Fenótipo , Proteínas/genética , Sistema Respiratório/citologia , Distribuição Tecidual
17.
Alcohol ; 41(5): 357-69, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17889312

RESUMO

Chronic alcohol abuse by human beings has been shown to be associated with increased susceptibility to pulmonary infections and severity of inflammatory responses associated with pulmonary infection. On the basis of the higher likelihood of exposure to respiratory viruses, people who abuse alcohol would logically be susceptible to respiratory viral infections. To test this hypothesis, mice were provided alcohol in drinking water for 13-16 weeks with the Meadows-Cook protocol and infected intranasally with respiratory syncytial virus. At various times after infection, severity of infection was determined by evaluation of cellular and cytokine composition of bronchoalveolar lavage fluid (BALF) and histologic evaluation of inflammation. Infection was associated with neutrophil infiltration in both groups, but the proportion and number of neutrophils in BALF were significantly greater in the alcohol consumption group than in the control group. Concentrations of tumor necrosis factor-alpha and monocyte chemoattractant protein-1 in BALF in the alcohol consumption group were increased. Interferon (IFN)-gamma concentrations were lower in the alcohol consumption group at later times of infection. Pulmonary inflammation was cleared by 3-5 days after infection in the control group. In contrast, pulmonary inflammation was evident in the alcohol consumption group after 7 days of infection, and some mice showed severe inflammation with hemorrhage and edema. IFN-alpha/beta was evident in BALF at low concentrations in the alcohol consumption group for several days after infection, and increased mRNA for IFN-alpha/beta was also evident in the alcohol consumption group. This was accompanied by the presence of virus in this group at these times of infection. Chronic alcohol consumption increased severity of pulmonary infection with a virus that naturally infects hosts by an aerosol route. Infection of mice that had consumed alcohol chronically was more severe in terms of increased proinflammatory cytokine production, inflammation, and a failure to clear the virus from the lungs.


Assuntos
Alcoolismo/complicações , Citocinas/metabolismo , Imunidade Inata , Pulmão/metabolismo , Infecções por Vírus Respiratório Sincicial/complicações , Vírus Sinciciais Respiratórios/patogenicidade , Alcoolismo/imunologia , Alcoolismo/metabolismo , Alcoolismo/patologia , Animais , Líquido da Lavagem Broncoalveolar/química , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Feminino , Interferon-alfa/metabolismo , Interferon beta/metabolismo , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Infiltração de Neutrófilos , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/patologia , Índice de Gravidade de Doença , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo
18.
BMC Anesthesiol ; 5(1): 3, 2005 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-15826301

RESUMO

BACKGROUND: The possibility exists for major complications to occur when individuals are intoxicated with alcohol prior to anesthetization. Halothane is an anesthetic that can be metabolized by the liver into a highly reactive product, trifluoroacetyl chloride, which reacts with endogenous proteins to form a trifluoroacetyl-adduct (TFA-adduct). The MAA-adduct which is formed by acetaldehyde (AA) and malondialdehyde reacting with endogenous proteins, has been found in both patients and animals chronically consuming alcohol. These TFA and MAA-adducts have been shown to cause the release of inflammatory products by various cell types. If both adducts share a similar mechanism of cell activation, receiving halothane anesthesia while intoxicated with alcohol could exacerbate the inflammatory response and lead to cardiovascular injury. METHODS: We have recently demonstrated that the MAA-adduct induces tumor necrosis factor-alpha (TNF-alpha) release by heart endothelial cells (HECs). In this study, pair and alcohol-fed rats were randomized to receive halothane pretreatments intra peritoneal. Following the pretreatments, the intact heart was removed, HECs were isolated and stimulated with unmodified bovine serum albumin (Alb), MAA-modified Alb (MAA-Alb), Hexyl-MAA, or lipopolysaccharide (LPS), and supernatant concentrations of TNF-alpha were measured by ELISA. RESULTS: Halothane pre-treated rat HECs released significantly greater TNF-alpha concentration following MAA-adduct and LPS stimulation than the non-halothane pre-treated in both pair and alcohol-fed rats, but was significantly greater in the alcohol-fed rats. CONCLUSION: These results demonstrate that halothane and MAA-adduct pre-treatment increases the inflammatory response (TNF-alpha release). Also, these results suggest that halothane exposure may increase the risk of alcohol-induced heart injury, since halothane pre-treatment potentiates the HEC TNF-alpha release measured following both MAA-Alb and LPS stimulation.

19.
Alcohol Clin Exp Res ; 28(7): 998-1004, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15252285

RESUMO

BACKGROUND: Our previous studies have shown that the ciliary beat frequency (CBF) of cultured ciliated airway epithelial cells exposed to chronic ethanol fails to increase in response to beta-agonist stimulation. This loss of the ciliary "flight response" correlates with an ethanol-mediated desensitization of adenosine 3':5'-cyclic monophosphate-dependent protein kinase (PKA), a known regulatory component of CBF stimulation. We hypothesized that a similar ethanol-mediated desensitization of CBF would occur in vivo. METHODS: Sprague Dawley rats were fed a liquid diet containing various concentrations of ethanol for 1 or 5 weeks. Half were exposed to cigarette smoke for 12 weeks and half were sham exposed. Animals were killed and tracheal epithelial cells analyzed for CBF and PKA activity. RESULTS: Baseline CBF (approximately 6 Hz) was unchanged in tracheal epithelial cells of rats consuming diets containing 0-36% ethanol for 5 weeks. Isoproterenol stimulated CBF to 12 to 13 Hz in the tracheal epithelial cells of control rats not administered ethanol. However, isoproterenol stimulation of CBF was blunted to 7.5 Hz in rats eating a 26% ethanol diet, and there was no stimulation of CBF in rats fed a diet containing 36% ethanol. Similarly, isoproterenol stimulated a 2- to 3-fold increase in PKA activity in control rats, but this PKA response to isoproterenol was blunted in rats fed increasing concentrations of ethanol. No isoproterenol-stimulated PKA response was observed in rats fed 36% ethanol. No ethanol-induced changes in cyclic guanosine monophosphate-dependent protein kinase or protein kinase C were observed in the rats' tracheal epithelial cells. Cigarette smoke exposure slightly elevated baseline CBF and lowered the ethanol consumption level for isoproterenol-desensitization of CBF and PKA activation to 16%. No isoproterenol desensitization was observed after 1 week of alcohol feeding. Furthermore, 36% ethanol-feeding for 1 week stimulated rat tracheal CBF and PKA. CONCLUSION: These data demonstrate that in vivo administration of ethanol to rats results in decreased ciliary beating and the desensitization of PKA. This suggests a mechanism for mucociliary clearance dysfunction in alcoholics.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Etanol/administração & dosagem , Mucosa Respiratória/efeitos dos fármacos , Fumar/metabolismo , Animais , Relógios Biológicos/efeitos dos fármacos , Relógios Biológicos/fisiologia , Cílios/efeitos dos fármacos , Cílios/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Mucosa Respiratória/metabolismo , Traqueia/efeitos dos fármacos , Traqueia/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...