Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35745685

RESUMO

Antibacterial adjuvants are of great significance, since they allow one to downscale the therapeutic dose of conventional antibiotics and reduce the insurgence of antibacterial resistance. Herein, we report that O-acetylserine sulfhydrylase (OASS) inhibitors could be used as colistin adjuvants to treat infections caused by critical pathogens spreading worldwide, Escherichia coli, Salmonella enterica serovar Typhimurium, and Klebsiella pneumoniae. Starting from a hit compound endowed with a nanomolar dissociation constant, we have rationally designed and synthesized a series of derivatives to be tested against S. Typhimurium OASS isoenzymes, StOASS-A and StOASS-B. All acidic derivatives have shown good activities in the nanomolar range against both OASS isoforms in vitro. Minimal Inhibitory Concentrations (MICs) were then evaluated, as well as compounds' toxicity. The compounds endowed with good activity in vitro and low cytotoxicity have been challenged as a potential colistin adjuvant against pathogenic bacteria in vitro and the fractional inhibitory concentration (FIC) index has been calculated to define additive or synergistic effects. Finally, the target engagement inside the S. Typhimurium cells was confirmed by using a mutant strain in which the OASS enzymes were inactivated. Our results provide a robust proof of principle supporting OASS as a potential nonessential antibacterial target to develop a new class of adjuvants.

2.
ChemMedChem ; 17(17): e202200277, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35638249

RESUMO

Cystic fibrosis (CF) is a genetic disease caused by loss-of-function mutations in the CFTR gene, which codes for a defective ion channel. This causes an electrolyte imbalance and results in a spiral of negative effects on multiple organs, most notably the accumulation of thick mucus in the lungs, chronic respiratory tract infections and inflammation leading to pulmonary exacerbation and premature death. Progressive decline of lung function is mainly linked to persistent or recurring infections, mostly caused by bacteria, which require treatments with antibiotics and represent one of the major life-limiting factors in subjects with CF. Treatment of such a complex disease require multiple drugs with a consequent therapeutic burden and complications caused by drug-drug interactions and rapid emergence of bacterial drug resistance. We report herein our recent efforts in developing innovative multifunctional antibiotics specifically tailored to CF by a direct action on bacterial topoisomerases and a potential indirect effect on the pulmonary mucociliary clearance mediated by ΔF508-CFTR correction. The obtained results may pave the way for the development of a simplified therapeutic approach with a single agent acting as multifunctional Antibacterial-Corrector.


Assuntos
Fibrose Cística , Microbiota , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Pulmão , Mutação
3.
ACS Med Chem Lett ; 11(7): 1435-1441, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32676151

RESUMO

To obtain effective eradication of numerous infectious diseases such as tuberculosis, it is important to supply the medicinal chemistry arsenal with novel chemical agents. Isosterism and bioisosterism are widely known concepts in the field of early drug discovery, and in several cases, rational isosteric replacements have contributed to improved efficacy and physicochemical characteristics throughout the hit-to-lead optimization process. However, sometimes the synthesis of isosteres might not be as straightforward as that of the parent compounds, and therefore, novel synthetic strategies must be elaborated. In this regard, we herein report the evaluation of a series of N-substituted 4-phenyl-2-aminooxazoles that, despite being isosteres of a widely used nucleus such as the 2-aminothiazole, have been only seldom explored. After elaboration of a convenient synthetic strategy, a small set of 2-aminothiazoles and their 2-aminooxazole counterparts were compared with regard to antitubercular activity and physicochemical characteristics.

4.
J Enzyme Inhib Med Chem ; 33(1): 1537-1544, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30284487

RESUMO

Infections caused by pathogens resistant to the available antimicrobial treatments represent nowadays a threat to global public health. Recently, it has been demonstrated that carbonic anhydrases (CAs) are essential for the growth of many pathogens and their inhibition leads to growth defects. Principal drawbacks in using CA inhibitors (CAIs) as antimicrobial agents are the side effects due to the lack of selectivity toward human CA isoforms. Herein we report a new class of CAIs, which preferentially interacts with microbial CA active sites over the human ones. The mechanism of action of these inhibitors was investigated against an important fungal pathogen, Cryptococcus neoformans, revealing that they are also able to inhibit CA in microbial cells growing in vitro. At our best knowledge, this is the first report on newly designed synthetic compounds selectively targeting ß-CAs and provides a proof of concept of microbial CAs suitability as an antimicrobial drug target.


Assuntos
Antifúngicos/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/enzimologia , Descoberta de Drogas , Piridinas/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Cryptococcus neoformans/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...