Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Gen Comp Endocrinol ; 294: 113495, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32360559

RESUMO

Thyroid stimulating hormone (TSH), a hormone produced in the anterior pituitary, is used to regulate thyroid hormone secretion. It has been known for over three decades that TSH is made by the cells of the immune system; however, the functional role of immune system TSH is unclear. We previously demonstrated that an alternatively-spliced isoform of TSHß, referred to as the TSHß splice variant (TSHßv), is the primary form of TSHß made by hematopoietic cells in mice and humans. Most studies have linked TSHßv expression to myeloid cells of the immune system; however, it has recently been demonstrated that plasma cells in patients with Hashimoto's thyroiditis may be a source of immune system TSHßv. Here, we demonstrate that TSHßv is expressed in bone marrow precursors of lymphoid cells, monocytes, and granulocytes, as well as in mesenteric lymph node (MLN) cells. Plasma cells generated by in vitro culture with bacterial lipopolysaccharide (LPS), and MLN cells from mice infected with L. monocytogenes expressed TSHßv. There was an increase in the intensity of intracellular TSHßv expression in MLN cells following exposure to LPS, and in the proportion of TSHßv+ CD138+ MLN cells following L. monocytogenes infection. The number of TSHßv+ cells increased in MLN cells, particularly among CD138+ cells, following bacterial infection. This was confirmed by an increase in gene expression of BLIMP-1, the transcription factor for CD138, following infection. Levels of circulating thyroxine dropped significantly in mice 24 hrs post-infection. These findings suggest that immune system TSHßv may contribute to the host immune response during bacterial infection.


Assuntos
Processamento Alternativo/genética , Infecções Bacterianas/sangue , Infecções Bacterianas/imunologia , Células da Medula Óssea/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Leucócitos/metabolismo , Tireotropina Subunidade beta/genética , Animais , Infecções Bacterianas/microbiologia , Células da Medula Óssea/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Leucócitos/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/fisiologia , Camundongos Endogâmicos C57BL , Tireotropina Subunidade beta/metabolismo
2.
Neurosci Lett ; 687: 223-233, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30287307

RESUMO

The rostral ventral lateral medulla (RVLM) is a brainstem area that plays a role in regulating numerous physiological systems, especially their responsiveness to acute stress. Aging affects the responsiveness of RVLM neural circuits to acute stress. Based on the relationship between ionotropic neurotransmitter receptors in the RVLM and the physiological functions mediated via activation of these receptors, we hypothesized that in response to acute heat stress the expression of ionotropic neurotransmitter receptors in the RVLM of aged rats would be characterized by upregulation of inhibitory subunits and downregulation of excitatory subunits. The goal of the present study was to determine the effect of acute heating on the gene expression profile of RVLM inhibitory (GABAA and Glycine) and excitatory (NMDA and AMPA) ionotropic neurotransmitter receptor subunits in young and aged F344 rats. RVLM tissue punches from young and aged F344 rats were analyzed using TaqMan qPCR and immunoblotting. When compared to age-matched controls, heat stress increased the gene expression of RVLM inhibitory receptor subunits in aged (Gabra1, Gabra2, Gabra5, Glra1) and young (Gabra1) F344 rats at mRNA level, with little change in the expression of RVLM excitatory receptor subunits. Significant age x heat interaction effects were observed with increased expression of Gabra2 and Gabrb1 inhibitory receptor subunits and decreased expression of Gria1 and Gria2 excitatory receptor subunits in the RVLM of aged F344 rats, with the most marked change observed with the Gabra2 subunit, which was validated by immunoblotting. These findings demonstrate that in response to acute heat stress there is enhanced expression of inhibitory ionotropic receptor subunits in aged compared to young rats, supporting the idea that advanced age may alter RVLM responsivity by affecting the molecular substrate of ionotropic receptors.


Assuntos
Resposta ao Choque Térmico/fisiologia , Bulbo/metabolismo , Neurotransmissores/metabolismo , Receptores de Neurotransmissores/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Tronco Encefálico/metabolismo , Temperatura Alta/efeitos adversos , Masculino , Ratos Endogâmicos F344 , Sistema Nervoso Simpático/metabolismo
3.
Physiol Genomics ; 49(8): 400-415, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28626023

RESUMO

The rostral ventrolateral medulla (RVLM) is an area of the brain stem that contains diverse neural substrates that are involved in systems critical for physiological function. There is evidence that aging affects some neural substrates within the RVLM, although age-related changes in RVLM molecular mechanisms are not well established. The goal of the present study was to characterize the transcriptomic profile of the aging RVLM and to test the hypothesis that aging is associated with altered gene expression in the RVLM, with an emphasis on immune system associated gene transcripts. RVLM tissue punches from young, middle-aged, and aged F344 rats were analyzed with Agilent's whole rat genome microarray. The RVLM gene expression profile varied with age, and an association between chronological age and specific RVLM gene expression patterns was observed [P < 0.05, false discovery rate (FDR) < 0.3]. Functional analysis of RVLM microarray data via gene ontology profiling and pathway analysis identified upregulation of genes associated with immune- and stress-related responses and downregulation of genes associated with lipid biosynthesis and neurotransmission in aged compared with middle-aged and young rats. Differentially expressed genes associated with the complement system and microglial cells were further validated by quantitative PCR with separate RVLM samples (P < 0.05, FDR < 0.1). The present results have identified age-related changes in the transcriptomic profile of the RVLM, modifications that may provide the molecular backdrop for understanding age-dependent changes in physiological regulation.


Assuntos
Envelhecimento/fisiologia , Bulbo/metabolismo , Animais , Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Análise em Microsséries , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Transcriptoma/genética
4.
Exp Gerontol ; 91: 99-103, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28263869

RESUMO

Aging alters sympathetic nervous system (SNS) regulation, although central mechanisms are not well understood. In young rats the rostral ventral lateral medulla (RVLM) is critically involved in central SNS regulation and RVLM neuronal activity is mediated by a balance of excitatory and inhibitory ionotropic neurotransmitters and receptors, providing the foundation for hypothesizing that with advanced age the molecular substrate of RVLM ionotropic receptors is characterized by upregulated excitatory and downregulated inhibitory receptor subunits. This hypothesis was tested by comparing the relative mRNA expression and protein concentration of RVLM excitatory (NMDA and AMPA) and inhibitory (GABA and glycinergic) ionotropic neurotransmitter receptor subunits in young and aged Fischer (F344) rats. Brains were removed from anesthetized rats and the RVLM-containing area was micropunched and extracted RNA and protein were subsequently used for TaqMan qRT-PCR gene expression and quantitative ELISA analyses. Bilateral chemical inactivation of RVLM neurons and peripheral ganglionic blockade on visceral sympathetic nerve discharge (SND) was determined in additional experiments. The relative gene expression of RVLM NMDA and AMPA glutamate-gated receptor subunits and protein concentration of select receptor subunits did not differ between young and aged rats, and there were no age-related differences in the expression of RVLM ionotropic GABAA and Gly receptors, or of protein concentration of select GABAA subunits. RVLM muscimol microinjections significantly reduced visceral SND by 70±2% in aged F344 rats. Collectively these findings from this short communication support a functional role for the RVLM in regulation of sympathetic nerve outflow in aged rats, but provide no evidence for an ionotropic RVLM receptor-centric framework explaining age-associated changes in SNS regulation.


Assuntos
Envelhecimento/genética , Bulbo/metabolismo , Receptores de Neurotransmissores/metabolismo , Animais , Expressão Gênica , Masculino , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos F344 , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de Neurotransmissores/genética , Sistema Nervoso Simpático/metabolismo
5.
Auton Neurosci ; 201: 68-71, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27554768

RESUMO

Ghrelin influences immune system function and modulates the sympathetic nervous system; however, the contribution of ghrelin to neural-immune interactions is not well-established because the effect of ghrelin on splenic sympathetic nerve discharge (SND) is not known. This study tested the hypothesis that central ghrelin administration would inhibit splenic SND in anesthetized rats. Rats received intracerebroventricular (ICV) injections of ghrelin (1nmol/kg) or aCSF. Lumbar SND recordings provided a non-visceral nerve control. The ICV ghrelin administration significantly increased splenic and lumbar SND, whereas mean arterial pressure (MAP) was not altered. These findings provide fundamental information regarding the nature of sympathetic-immune interactions.


Assuntos
Grelina/farmacologia , Baço/efeitos dos fármacos , Baço/inervação , Sistema Nervoso Simpático/efeitos dos fármacos , Simpatomiméticos/farmacologia , Anestesia , Animais , Pressão Arterial/efeitos dos fármacos , Pressão Arterial/fisiologia , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Fatores Imunológicos/farmacologia , Injeções Intraventriculares , Vértebras Lombares , Masculino , Ratos Sprague-Dawley , Baço/fisiologia , Sistema Nervoso Simpático/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...