Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(1): 101395, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34762912

RESUMO

Branching enzymes (BEs) are essential in the biosynthesis of starch and glycogen and play critical roles in determining the fine structure of these polymers. The substrates of these BEs are long carbohydrate chains that interact with these enzymes via multiple binding sites on the enzyme's surface. By controlling the branched-chain length distribution, BEs can mediate the physiological properties of starch and glycogen moieties; however, the mechanism and structural determinants of this specificity remain mysterious. In this study, we identify a large dodecaose binding surface on rice BE I (BEI) that reaches from the outside of the active site to the active site of the enzyme. Mutagenesis activity assays confirm the importance of this binding site in enzyme catalysis, from which we conclude that it is likely the acceptor chain binding site. Comparison of the structures of BE from Cyanothece and BE1 from rice allowed us to model the location of the donor-binding site. We also identified two loops that likely interact with the donor chain and whose sequences diverge between plant BE1, which tends to transfer longer chains, and BEIIb, which transfers exclusively much shorter chains. When the sequences of these loops were swapped with the BEIIb sequence, rice BE1 also became a short-chain transferring enzyme, demonstrating the key role these loops play in specificity. Taken together, these results provide a more complete picture of the structure, selectivity, and activity of BEs.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana , Cyanothece , Oryza , Enzima Ramificadora de 1,4-alfa-Glucana/química , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Glicogênio , Oryza/enzimologia , Oryza/metabolismo , Amido/biossíntese , Relação Estrutura-Atividade
2.
J Am Chem Soc ; 141(43): 17125-17132, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31557439

RESUMO

Protein conformational switches or allosteric proteins play a key role in the regulation of many essential biological pathways. Nonetheless, the implementation of protein conformational switches in protein design applications has proven challenging, with only a few known examples that are not derivatives of naturally occurring allosteric systems. We have discovered that the domain-swapped (DS) dimer of hCRBPII undergoes a large and robust conformational change upon retinal binding, making it a potentially powerful template for the design of protein conformational switches. Atomic resolution structures of the apo- and holo-forms illuminate a simple, mechanical movement involving sterically driven torsion angle flipping of two residues that drive the motion. We further demonstrate that the conformational "readout" can be altered by addition of cross-domain disulfide bonds, also visualized at atomic resolution. Finally, as a proof of principle, we have created an allosteric metal binding site in the DS dimer, where ligand binding results in a reversible 5-fold loss of metal binding affinity. The high resolution structure of the metal-bound variant illustrates a well-formed metal binding site at the interface of the two domains of the DS dimer and confirms the design strategy for allosteric regulation.


Assuntos
Engenharia de Proteínas/métodos , Proteínas Celulares de Ligação ao Retinol/química , Proteínas Celulares de Ligação ao Retinol/metabolismo , Regulação Alostérica , Sítios de Ligação , Dicroísmo Circular , Cristalografia por Raios X , Dissulfetos/química , Ligantes , Metais/metabolismo , Modelos Moleculares , Mutação , Domínios Proteicos , Multimerização Proteica , Proteínas Celulares de Ligação ao Retinol/genética , Treonina/genética , Tirosina/genética , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...