Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Med ; 13(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39064081

RESUMO

Background: The dysregulation of extraocular muscles (EOMs) in the strabismus may be partly due to modification in the mitochondrial DNA (mtDNA). Currently, little is known about changes occurring in mtDNA of EOMs in patients with strabismus, therefore the aim of our study was to analyze if there are any changes occurring in the mitochondrial DNA of extraocular muscles in children that underwent strabismus surgery in our clinic. Methods: MtDNA was isolated from the tissue material using the Qiagen kit. Assessment of mtDNA mutations was performed by next-generation sequencing (NGS) using the Illumina MiSeq protocol. Results: The examination revealed the presence of atrophic changes in muscle fibers. NGS evaluation revealed a dominant genetic mutation in the ANT1 gene in 12 of the 15 patients examined. Conclusions: The presented results constitute the beginning of research on changes in mtDNA occurring in the muscles of children with strabismus surgery. Further studies are necessary in the context of resolving the transcriptomic differences between strabismic and non-strabismic EOMs. Better understanding of the molecular genetics of strabismus will lead to improved knowledge of the disease mechanisms and ultimately to a more effective treatment.

2.
Plant Cell ; 35(11): 3957-3972, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37497643

RESUMO

DNA double-stranded breaks (DSBs) generated by the Cas9 nuclease are commonly repaired via nonhomologous end-joining (NHEJ) or homologous recombination (HR). However, little is known about unrepaired DSBs and the type of damage they trigger in plants. We designed an assay that detects loss of heterozygosity (LOH) in somatic cells, enabling the study of a broad range of DSB-induced genomic events. The system relies on a mapped phenotypic marker which produces a light purple color (betalain pigment) in all plant tissues. Plants with sectors lacking the Betalain marker upon DSB induction between the marker and the centromere were tested for LOH events. Using this assay, we detected a tomato (Solanum lycopersicum) flower with a twin yellow and dark purple sector, corresponding to a germinally transmitted somatic crossover event. We also identified instances of small deletions of genomic regions spanning the T-DNA and whole chromosome loss. In addition, we show that major chromosomal rearrangements including loss of large fragments, inversions, and translocations were clearly associated with the CRISPR-induced DSB. Detailed characterization of complex rearrangements by whole-genome sequencing and molecular and cytological analyses supports a model in which a breakage-fusion-bridge cycle followed by chromothripsis-like rearrangements had been induced. Our LOH assay provides a tool for precise breeding via targeted crossover detection. It also uncovers CRISPR-mediated chromothripsis-like events in plants.


Assuntos
Cromotripsia , Sistemas CRISPR-Cas/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Recombinação Homóloga , Solanum lycopersicum/genética
3.
Plant Methods ; 19(1): 23, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894953

RESUMO

BACKGROUND: The rapidly advancing corn breeding field calls for high-throughput methods to phenotype corn kernel traits to estimate yield and to study their genetic inheritance. Most of the existing methods are reliant on sophisticated setup, expertise in statistical models and programming skills for image capturing and analysis. RESULTS: We demonstrated a portable, easily accessible, affordable, panoramic imaging capturing system called Corn360, followed by image analysis using freely available software, to characterize total kernel count and different patterned kernel counts of a corn ear. The software we used did not require programming skills and utilized Artificial Intelligence to train a model and to segment the images of mixed patterned corn ears. For homogeneously patterned corn ears, our results showed accuracies of 93.7% of total kernel count compared to manual counting. Our method allowed to save an average of 3 min 40 s per image. For mixed patterned corn ears, our results showed accuracies of 84.8% or 61.8% of segmented kernel counts. Our method has the potential to greatly decrease counting time per image as the number of images increases. We also demonstrated a case of using Corn360 to count different categories of kernels on a mixed patterned corn ear resulting from a cross of sweet corn and sticky corn and showed that starch:sweet:sticky segregated in a 9:4:3 ratio in its F2 population. CONCLUSIONS: The panoramic Corn360 approach enables for a portable low-cost high-throughput kernel quantification. This includes total kernel quantification and quantification of different patterned kernels. This can allow for quick estimate of yield component and for categorization of different patterned kernels to study the inheritance of genes controlling color and texture. We demonstrated that using the samples resulting from a sweet × sticky cross, the starchiness, sweetness and stickiness in this case were controlled by two genes with epistatic effects. Our achieved results indicate Corn360 can be used to effectively quantify corn kernels in a portable and cost-efficient way that is easily accessible with or without programming skills.

4.
Proc Natl Acad Sci U S A ; 120(14): e2205785119, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36972450

RESUMO

Plant breeding relies on crossing-over to create novel combinations of alleles needed to confer increased productivity and other desired traits in new varieties. However, crossover (CO) events are rare, as usually only one or two of them occur per chromosome in each generation. In addition, COs are not distributed evenly along chromosomes. In plants with large genomes, which includes most crops, COs are predominantly formed close to chromosome ends, and there are few COs in the large chromosome swaths around centromeres. This situation has created interest in engineering CO landscape to improve breeding efficiency. Methods have been developed to boost COs globally by altering expression of anti-recombination genes and increase CO rates in certain chromosome parts by changing DNA methylation patterns. In addition, progress is being made to devise methods to target COs to specific chromosome sites. We review these approaches and examine using simulations whether they indeed have the capacity to improve efficiency of breeding programs. We found that the current methods to alter CO landscape can produce enough benefits for breeding programs to be attractive. They can increase genetic gain in recurrent selection and significantly decrease linkage drag around donor loci in schemes to introgress a trait from unimproved germplasm to an elite line. Methods to target COs to specific genome sites were also found to provide advantage when introgressing a chromosome segment harboring a desirable quantitative trait loci. We recommend avenues for future research to facilitate implementation of these methods in breeding programs.


Assuntos
Melhoramento Vegetal , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Fenótipo , Produtos Agrícolas/genética , Cromossomos de Plantas/genética
5.
BMC Genomics ; 23(1): 702, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224518

RESUMO

BACKGROUND: Cellular events during meiosis can differ between inbred lines in maize. Substantial differences in the average numbers of chiasmata and double-strand breaks (DSBs) per meiotic cell have been documented among diverse inbred lines of maize: CML228, a tropical maize inbred line, B73 and Mo17, temperate maize lines. To determine if gene expression might explain these observed differences, an RNA-Seq experiment was performed on CML228 male meiocytes which was compared to B73 and Mo17 male meiocytes, where plants were grown in the same controlled environment. RESULTS: We found that a few DSB-repair/meiotic genes which promote class I crossovers (COs) and the Zyp1 gene which limits newly formed class I COs were up-regulated, whereas Mus81 homolog 2 which promotes class II COs was down-regulated in CML228. Although we did not find enriched gene ontology (GO) categories directly related to meiosis, we found that GO categories in membrane, localization, proteolysis, energy processes were up-regulated in CML228, while chromatin remodeling, epigenetic regulation, and cell cycle related processes including meiosis related cell cycle processes were down-regulated in CML228. The degree of similarity in expression patterns between the three maize lines reflect their genetic relatedness: B73 and Mo17 had similar meiotic expressions and CML228 had a more distinct expression profile. CONCLUSIONS: We found that meiotic related genes were mostly conserved among the three maize inbreds except for a few DSB-repair/meiotic genes. The findings that the molecular players in limiting class I CO formation (once CO assurance is achieved) were up-regulated and those involved in promoting class II CO formation were down-regulated in CML228 agree with the lower chiasmata number observed in CML228 previously. In addition, epigenetics such as chromatin remodeling and histone modification might play a role. Transport and energy-related processes was up-regulated and Cyclin13 was down-regulated in CML228. The direction of gene expression of these processes agree with that previously found in meiotic tissues compared with vegetative tissues. In summary, we used different natural maize inbred lines from different climatic conditions and have shown their differences in expression landscape in male meiocytes.


Assuntos
Quebras de DNA de Cadeia Dupla , Zea mays , Epigênese Genética , Meiose/genética , Recombinação Genética , Transcriptoma , Zea mays/metabolismo
6.
Genetics ; 222(1)2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35894926

RESUMO

CRISPR/Cas9 has dramatically changed how we conduct genetic research, providing a tool for precise sequence editing. However, new applications of CRISPR/Cas9 have emerged that do not involve nuclease activity. In the accompanying article "A dCas9-based system identifies a central role for Ctf19 in kinetochore-derived suppression of meiotic recombination," Kuhl et al. utilize a catalytically dead Cas9 to localize proteins at specific genomic locations. The authors seek to understand the role of kinetochore proteins in the suppression of meiotic recombination, a phenomenon that has been observed in centromere regions. By harnessing the power of CRISPR/Cas9 to bind specific genomic sequences, Kuhl et al. localized individual kinetochore proteins to areas of high meiotic recombination and assessed their role in suppression. This primer article provides undergraduate students with background information on chromosomes, meiosis, recombination and CRISPR/Cas9 to support their reading of the Kuhl et al. study. This primer is intended to help students and instructors navigate the study's experimental design, interpret the results, and appreciate the broader scope of meiotic recombination and CRISPR/Cas9. Questions are included to facilitate discussion of the study.


Assuntos
Sistemas CRISPR-Cas , Cinetocoros , Centrômero , Edição de Genes/métodos , Recombinação Homóloga , Humanos , Meiose/genética
7.
New Phytol ; 235(1): 157-172, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35322878

RESUMO

Meiosis is an essential reproductive process to create new genetic variation. During early meiosis, higher order chromosome organization creates a platform for meiotic processes to ensure the accuracy of recombination and chromosome segregation. However, little is known about the regulatory mechanisms underlying dynamic chromosome organization in plant meiosis. Here, we describe abnormal chromosome organization in zygotene1 (ACOZ1), which encodes a canonical F-box protein in maize. In acoz1 mutant meiocytes, chromosomes maintain a leptotene-like state and never compact to a zygotene-like configuration. Telomere bouquet formation and homologous pairing are also distorted and installation of synaptonemal complex ZYP1 protein is slightly defective. Loading of early recombination proteins RAD51 and DMC1 is unaffected, indicating that ACOZ1 is not required for double strand break formation or repair. However, crossover formation is severely disturbed. The ACOZ1 protein localizes on the boundary of chromatin, rather directly to chromosomes. Furthermore, we identified that ACOZ1 interacts with SKP1 through its C-terminus, revealing that it acts as a subunit of the SCF E3 ubiquitin/SUMO ligase complex. Overall, our results suggest that ACOZ1 functions independently from the core meiotic recombination pathway to influence crossover formation by controlling chromosome compaction during maize meiosis.


Assuntos
Proteínas F-Box , Zea mays , Pareamento Cromossômico , Segregação de Cromossomos/genética , Cromossomos , Proteínas F-Box/genética , Meiose , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Complexo Sinaptonêmico/metabolismo , Zea mays/genética , Zea mays/metabolismo
8.
BMC Genomics ; 23(1): 199, 2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35279087

RESUMO

BACKGROUND: RAD51 proteins, which are conserved in all eukaryotes, repair DNA double-strand breaks. This is critical to homologous chromosome pairing and recombination enabling successful reproduction. Work in Arabidopsis suggests that RAD51 also plays a role in plant defense; the Arabidopsis rad51 mutant is more susceptible to Pseudomonas syringae. However, the defense functions of RAD51 and the proteins interacting with RAD51 have not been thoroughly investigated in maize. Uncovering ligands of RAD51 would help to understand meiotic recombination and possibly the role of RAD51 in defense. This study used phage display, a tool for discovery of protein-protein interactions, to search for proteins interacting with maize RAD51A1. RESULTS: Maize RAD51A1 was screened against a random phage library. Eleven short peptide sequences were recovered from 15 phages which bound ZmRAD51A1 in vitro; three sequences were found in multiple successfully binding phages. Nine of these phage interactions were verified in vitro through ELISA and/or dot blotting. BLAST searches did not reveal any maize proteins which contained the exact sequence of any of the selected phage peptides, although one of the selected phages had a strong alignment (E-value = 0.079) to a binding domain of maize BRCA2. Therefore, we designed 32 additional short peptides using amino acid sequences found in the predicted maize proteome. These peptides were not contained within phages. Of these synthesized peptides, 14 bound to ZmRAD51A1 in a dot blot experiment. These 14 sequences are found in known maize proteins including transcription factors putatively involved in defense. CONCLUSIONS: These results reveal several peptides which bind ZmRAD51A1 and support a potential role for ZmRAD51A1 in transcriptional regulation and plant defense. This study also demonstrates the applicability of phage display to basic science questions, such as the search for binding partners of a known protein, and raises the possibility of an iterated approach to test peptide sequences that closely but imperfectly align with the selected phages.


Assuntos
Bacteriófagos , Zea mays , Sequência de Aminoácidos , Bacteriófagos/metabolismo , Meiose , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Zea mays/genética , Zea mays/metabolismo
9.
Molecules ; 26(13)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206773

RESUMO

The aim of the study was to investigate the influence of sand bed moisture on TNT transport from under the sand layer. The MO-2M explosive vapor detector was used, the detection mechanism of which is based on the FAIMS method. In addition, it was determined after what time the detector alarm appears, signaling the presence of TNT vapors, and how it affects the thickness of the sand layer. The performed work allowed us to assess the suitability and possibly adapt the MO-2M detector to detect non-metal mines, which will help develop new application possibilities for this device. These tests can also be used to eliminate environmental contamination resulting from the deposition of explosives in the ground and the migration of harmful compounds to groundwater.

11.
Plant Cell ; 30(10): 2628-2638, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30282794

RESUMO

Meiotic recombination generates genetic diversity and ensures proper chromosome segregation. Recombination is initiated by the programmed formation of double-strand breaks (DSBs) in chromosomal DNA by DNA Topoisomerase VI-A Subunit (SPO11), a topoisomerase-like enzyme. Repair of some DSBs leads to the formation of crossovers (COs). In most organisms, including plants, the number of DSBs greatly exceeds the number of COs and which DSBs become CO sites is tightly controlled. The CO landscape is affected by DNA sequence and epigenome features of chromosomes as well as by global mechanisms controlling recombination dynamics. The latter are poorly understood and their effects on CO distribution are not well elucidated. To study how recombination dynamics affects CO distribution, we engineered Arabidopsis thaliana plants to carry hypomorphic alleles of SPO11-1 Two independent transgenic lines showed ∼30% and 40% reductions in DSB numbers, which were commensurate with the dosage of the SPO11-1 transcript. The reduction in DSB number resulted in proportional, although smaller, reductions of the number of COs. Most interestingly, CO distribution along the chromosomes was dramatically altered, with substantially fewer COs forming in pericentromeric chromosome regions. These results indicate that SPO11 activity, and the resulting DSB numbers are major factors shaping the CO landscape.


Assuntos
Arabidopsis/genética , Troca Genética , Quebras de DNA de Cadeia Dupla , Meiose , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Centrômero/genética , Centrômero/metabolismo , Pareamento Cromossômico/genética , Segregação de Cromossomos , Cromossomos de Plantas , Reparo do DNA , Mutação , Plantas Geneticamente Modificadas
12.
Nat Commun ; 9(1): 2370, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29915302

RESUMO

Meiotic crossovers (COs) are not uniformly distributed across the genome. Factors affecting this phenomenon are not well understood. Although many species exhibit large differences in CO numbers between sexes, sex-specific aspects of CO landscape are particularly poorly elucidated. Here, we conduct high-resolution CO mapping in maize. Our results show that CO numbers as well as their overall distribution are similar in male and female meioses. There are, nevertheless, dissimilarities at local scale. Male and female COs differ in their locations relative to transcription start sites in gene promoters and chromatin marks, including nucleosome occupancy and tri-methylation of lysine 4 of histone H3 (H3K4me3). Our data suggest that sex-specific factors not only affect male-female CO number disparities but also cause fine differences in CO positions. Differences between male and female CO landscapes indicate that recombination has distinct implications for population structure and gene evolution in male and in female meioses.


Assuntos
Troca Genética , Óvulo Vegetal/genética , Pólen/genética , Zea mays/genética , Mapeamento Cromossômico , Regiões Promotoras Genéticas
13.
BMC Plant Biol ; 18(1): 12, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29334940

RESUMO

CORRECTION: Following publication of the original article [1], the authors reported that the number of genes overlaying the bar graph in Fig. 3A were incorrectly counted and inserted (i.e. including a title tile, and in inverse order). The corrected numbers are below and match with the listed genes supplied in Additional File: Table S2.

14.
Proc Natl Acad Sci U S A ; 114(46): 12231-12236, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29087335

RESUMO

Meiotic recombination is the most important source of genetic variation in higher eukaryotes. It is initiated by formation of double-strand breaks (DSBs) in chromosomal DNA in early meiotic prophase. The DSBs are subsequently repaired, resulting in crossovers (COs) and noncrossovers (NCOs). Recombination events are not distributed evenly along chromosomes but cluster at recombination hotspots. How specific sites become hotspots is poorly understood. Studies in yeast and mammals linked initiation of meiotic recombination to active chromatin features present upstream from genes, such as absence of nucleosomes and presence of trimethylation of lysine 4 in histone H3 (H3K4me3). Core recombination components are conserved among eukaryotes, but it is unclear whether this conservation results in universal characteristics of recombination landscapes shared by a wide range of species. To address this question, we mapped meiotic DSBs in maize, a higher eukaryote with a large genome that is rich in repetitive DNA. We found DSBs in maize to be frequent in all chromosome regions, including sites lacking COs, such as centromeres and pericentromeric regions. Furthermore, most DSBs are formed in repetitive DNA, predominantly Gypsy retrotransposons, and only one-quarter of DSB hotspots are near genes. Genic and nongenic hotspots differ in several characteristics, and only genic DSBs contribute to crossover formation. Maize hotspots overlap regions of low nucleosome occupancy but show only limited association with H3K4me3 sites. Overall, maize DSB hotspots exhibit distribution patterns and characteristics not reported previously in other species. Understanding recombination patterns in maize will shed light on mechanisms affecting dynamics of the plant genome.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA de Plantas/genética , Genoma de Planta , Meiose , Zea mays/genética , Mapeamento Cromossômico , DNA de Plantas/metabolismo , Nucleossomos/química , Nucleossomos/metabolismo , Reparo de DNA por Recombinação , Sequências de Repetição em Tandem , Zea mays/metabolismo
15.
Forensic Sci Int ; 281: 13-17, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29101903

RESUMO

The philosophy underlying the procedure with the trace from the moment of the securing of the evidence up to its ultimate inspection is of significance for the result achieved. Hands of the people who conduct investigative action or of the experts involved in examinations contaminated with explosives may adversely affect results of the analyses. The contamination effect is one of the most dangerous consequences of non-observance of the strict rules in handling the traces secured on the crime scene. The aim of this research work was to examine whether at all, and if so, with what an ease and at which stage of the analytical procedure there occurs a likely contamination of the evidence material with explosives such as TNT, RDX, PETN, NG. The analytical procedure employed consisted of the sampling stage, extraction from gauze swab, transfer of the extract and execution of an instrumental analysis based on gas chromatography with electron capture detector (ECD). The most significant contamination effect was observed during the analytical procedure for TNT, followed by a similar, yet less pronounced, for RDX and PETN. Contaminating the research material with nitroglycerin, known to be liquid under normal conditions, proved unsuccessful.

16.
Plant Physiol ; 174(3): 1795-1806, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28550207

RESUMO

Methylation of Lys residues in the tail of the H3 histone is a key regulator of chromatin state and gene expression, conferred by a large family of enzymes containing an evolutionarily conserved SET domain. One of the main types of SET domain proteins are those controlling H3K4 di- and trimethylation. The genome of Arabidopsis (Arabidopsis thaliana) encodes 12 such proteins, including five ARABIDOPSIS TRITHORAX (ATX) proteins and seven ATX-Related proteins. Here, we examined three until-now-unexplored ATX proteins, ATX3, ATX4, and ATX5. We found that they exhibit similar domain structures and expression patterns and are redundantly required for vegetative and reproductive development. Concurrent disruption of the ATX3, ATX4, and ATX5 genes caused marked reduction in H3K4me2 and H3K4me3 levels genome-wide and resulted in thousands of genes expressed ectopically. Furthermore, atx3/atx4/atx5 triple mutants resulted in exaggerated phenotypes when combined with the atx2 mutant but not with atx1 Together, we conclude that ATX3, ATX4, and ATX5 are redundantly required for H3K4 di- and trimethylation at thousands of sites located across the genome, and genomic features associated with targeted regions are different from the ATXR3/SDG2-controlled sites in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Desenvolvimento Vegetal/genética , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Metilação , Metiltransferases/química , Metiltransferases/genética , Metiltransferases/metabolismo , Mutação/genética , Fenótipo , Filogenia , Domínios Proteicos , Transcrição Gênica
17.
J Forensic Sci ; 62(4): 1028-1032, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28547850

RESUMO

The current practice in securing the contact traces of chemical substances taken from clothes belonging to a person suspected of manual handling explosives is focused on pockets and cuffs. The outerwear worn by people who had contact with fluorescent powders that simulate explosives and drugs was the subject of this study. Clothes were first exposed to the test substance for a period of time and then analyzed by fluorescence methods to determine the location of the highest quantity of traces. The results obtained from the study confirm that the areas with the highest concentration of powdery traces are different from those suggested by current forensic practice. They appear to be promising for a more efficient identification of the suspects involved in illegal manufacturing of drugs of abuse or explosives. Moreover, they may be helpful for developing the methodology for handling the evidence material in the forensic clothing examination process.


Assuntos
Vestuário , Substâncias Explosivas/isolamento & purificação , Fluorescência , Drogas Ilícitas/isolamento & purificação , Pós , Tráfico de Drogas , Ciências Forenses/métodos , Humanos , Fotografação
18.
BMC Genomics ; 18(1): 106, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28122517

RESUMO

BACKGROUND: Meiotic recombination is a major source of genetic variation in eukaryotes. The role of recombination in evolution is recognized but little is known about how evolutionary forces affect the recombination pathway itself. Although the recombination pathway is fundamentally conserved across different species, genetic variation in recombination components and outcomes has been observed. Theoretical predictions and empirical studies suggest that changes in the recombination pathway are likely to provide adaptive abilities to populations experiencing directional or strong selection pressures, such as those occurring during species domestication. We hypothesized that adaptive changes in recombination may be associated with adaptive evolution patterns of genes involved in meiotic recombination. RESULTS: To examine how maize evolution and domestication affected meiotic recombination genes, we studied patterns of sequence polymorphism and divergence in eleven genes controlling key steps in the meiotic recombination pathway in a diverse set of maize inbred lines and several accessions of teosinte, the wild ancestor of maize. We discovered that, even though the recombination genes generally exhibited high sequence conservation expected in a pathway controlling a key cellular process, they showed substantial levels and diverse patterns of sequence polymorphism. Among others, we found differences in sequence polymorphism patterns between tropical and temperate maize germplasms. Several recombination genes displayed patterns of polymorphism indicative of adaptive evolution. CONCLUSIONS: Despite their ancient origin and overall sequence conservation, meiotic recombination genes can exhibit extensive and complex patterns of molecular evolution. Changes in these genes could affect the functioning of the recombination pathway, and may have contributed to the successful domestication of maize and its expansion to new cultivation areas.


Assuntos
Evolução Molecular , Meiose/genética , Recombinação Genética , Zea mays/genética , Meio Ambiente , Duplicação Gênica , Interação Gene-Ambiente , Genes de Plantas , Variação Genética , Genoma de Planta , Genômica/métodos , Endogamia , Seleção Genética
19.
Front Plant Sci ; 7: 1433, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27713757

RESUMO

Recombination occurring during meiosis is critical for creating genetic variation and plays an essential role in plant evolution. In addition to creating novel gene combinations, recombination can affect genome structure through altering GC patterns. In maize (Zea mays) and other grasses, another intriguing GC pattern exists. Maize genes show a bimodal GC content distribution that has been attributed to nucleotide bias in the third, or wobble, position of the codon. Recombination may be an underlying driving force given that recombination sites are often associated with high GC content. Here we explore the relationship between recombination and genomic GC patterns by comparing GC gene content at each of the three codon positions (GC1, GC2, and GC3, collectively termed GCx) to instances of a variable GC-rich motif that underlies double strand break (DSB) hotspots and to meiocyte-specific gene expression. Surprisingly, GCx bimodality in maize cannot be fully explained by the codon wobble hypothesis. High GCx genes show a strong overlap with the DSB hotspot motif, possibly providing a mechanism for the high evolutionary rates seen in these genes. On the other hand, genes that are turned on in meiosis (early prophase I) are biased against both high GCx genes and genes with the DSB hotspot motif, possibly allowing important meiotic genes to avoid DSBs. Our data suggests a strong link between the GC-rich motif underlying DSB hotspots and high GCx genes.

20.
Methods Mol Biol ; 1429: 177-88, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27511175

RESUMO

Genome-wide maps of recombination sites provide valuable information not only on the recombination pathway itself but also facilitate the understanding of genome dynamics and evolution. Here, we describe a chromatin immunoprecipitation (ChIP) protocol to map the sites of recombination initiation in plants with maize used as an example. ChIP is a method that allows identification of chromosomal sites occupied by specific proteins. Our protocol utilizes RAD51, a protein involved in repair of double-strand breaks (DSBs) that initiate meiotic recombination, to identify DSB formation hotspots. Chromatin is extracted from meiotic flowers, sheared and enriched in fragments bound to RAD51. Genomic location of the protein is then identified by next-generation sequencing. This protocol can also be used in other species of plants, animals, and fungi.


Assuntos
Imunoprecipitação da Cromatina/métodos , Mapeamento Cromossômico/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Recombinação Genética , Sítio de Iniciação de Transcrição , Zea mays/genética , Cromossomos de Plantas , Rad51 Recombinase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...