Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37959438

RESUMO

The aims of this work were to evaluate the reactivity of sugarcane straw ashes (SCSA) burned under controlled conditions and to analyze their reactivity in blended cement and hydrated lime pastes by thermogravimetric analysis (TG) and calorimetry. Four different ashes were produced, and burned at 600 °C, 700 °C, 800 °C and 900 °C (SCSA600, SCSA700, SCSA800 and SCSA900, respectively). These ashes were characterized by X-ray fluorescence spectroscopy, X-ray diffractometry, particle size distribution by laser diffraction and specific area surfaces to assess their potential interest in the partial replacement of inorganic binders (Portland cement (OPC) and hydrated lime). The hydrated lime pastes were subjected to scanning electron microscopy (SEM) and TG. The blended cement pastes were analyzed by TG and calorimetry, compressive strength testing and mercury intrusion porosimetry. High lime fixation percentages were observed in the hydrated lime and OPC pastes and were higher than 75% and 50% for the ashes burned at 600 °C and 700 °C, respectively. Calorimetry showed a delay in the heat release of SCSA600 and SCSA700 compared to the control paste. These pastes also had higher compressive strength and a smaller total pore volume. The results indicate the positive response of preparing sugar cane ashes under controlled conditions (mainly for straw calcined within the 600-700 °C range) for their use as pozzolanic addition by partially replacing inorganic binders.

2.
Materials (Basel) ; 15(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499884

RESUMO

The aim of this study was to use the electrical impedance spectroscopy technique (IS) to carry out a systematic study on the mechanism of metakaolin geopolymerization for up to 7 curing days. The study was developed on two batches of metakaolin (MK), and their reaction processes were compared. Interpretative fundamental elements were developed based on the effective electrical conductivity curves regarding the metakaolin geopolymerization. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were previously carried out and used to interpret and validate the electrical behavior of the fresh and hardened MK-based geopolymer pastes. The results highlighted the sensibility of the impedance technique to the identification and description of the MK geopolymerization process, as well as the changes resulting from even slight variations in the metakaolin composition. Furthermore, this indicated that the geopolymerization process in highly alkaline solutions could be divided into seven stages, including the processes of dissolution, nucleation, precipitation and formation of the gel and, eventually, the retraction/microcracks constitution. Late dissolution processes could be observed during the more advanced stages and were attributed to particles not being fully hydrated.

3.
J Environ Manage ; 167: 115-23, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26615227

RESUMO

Some Chilean copper slag dumps from the nineteenth century still remain, without a proposed use that encourages recycling and reduces environmental impact. In this paper, the copper slag abandoned in landfills is proposed as a new building material. The slags studied were taken from Playa Negra and Púquios dumps, both located in the region of Atacama in northern Chile. Pozzolanic activity in lime and Portland cement systems, as well as the alkali activation in pastes with copper slag cured at different temperatures, was studied. The reactivity of the slag was measured using thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), electrical conductivity and pH in aqueous suspension and Fourier Transform Infrared Spectroscopy (FTIR). Furthermore, copper slag-Portland cement mortars with the substitution of 25% (by weight) of cement by copper slag and alkali-activated slag mortars cured at 20 and 65 °C were made, to determine the compressive strength. The results indicate that the ancient copper slags studied have interesting binding properties for the construction sector.


Assuntos
Materiais de Construção , Cobre , Resíduos Industriais , Álcalis/química , Chile , Força Compressiva , Metalurgia , Microscopia Eletrônica de Varredura , Papel , Reciclagem , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria/métodos , Água , Difração de Raios X
4.
Materials (Basel) ; 7(11): 7533-7547, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-28788261

RESUMO

The use of methods based on measuring electrical conductivity to assess pozzolanic activity has recently been used primarily in aqueous suspensions of pozzolan: calcium hydroxide. However, the use of similar methods in suspensions of cement with pozzolans has not been widely studied. This paper proposes a new method for rapid assessment of the pozzolanic activity of mineral admixtures in aqueous cement suspensions. In this study, the conditions for the application of the method were optimized, such as time, temperature, w/c ratio and dosage procedure. Finally, results are presented from the application of this method for characterizing the pozzolanic activity of the spent catalytic cracking catalyst. These results corroborate as previously reported, namely the high reactivity of this pozzolan obtained by other methods, such as thermogravimetry or evolution of the mechanical strength. In addition, the pozzolanic activity of the catalyst was compared with other pozzolans such as metakaolin and silica fume.

5.
Materials (Basel) ; 7(4): 2561-2576, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28788583

RESUMO

The pozzolanic activity of the spent catalyst produced by fluid catalytic cracking (FCC) has been studied by various methods in recent years. However, no quick and easy method has been reported for this activity based on the associated studies. In this work, the pozzolanic activity of a spent catalyst was investigated by measuring its electrical conductivity in aqueous suspensions of pozzolan/calcium hydroxide. The behavior of the FCC catalyst residue was compared to that of reactive and inert materials of similar chemical compositions. Further, the influence of temperature on the suspension was studied, and also, a new method was proposed in which the pozzolan/calcium hydroxide ratio was varied (with the initial presence of solid Ca(OH)2 in the system). It was concluded that the method is effective, fast and simple for evaluating the high reactivity of the catalyst. Therefore, this method is an alternative for the evaluation of the reactivity of pozzolanic materials.

6.
Materials (Basel) ; 6(8): 3108-3127, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28811425

RESUMO

Blast furnace slag (BFS)/sugar cane bagasse ash (SCBA) blends were assessed for the production of alkali-activated pastes and mortars. SCBA was collected from a lagoon in which wastes from a sugar cane industry were poured. After previous dry and grinding processes, SCBA was chemically characterized: it had a large percentage of organic matter (ca. 25%). Solutions of sodium hydroxide and sodium silicate were used as activating reagents. Different BFS/SCBA mixtures were studied, replacing part of the BFS by SCBA from 0 to 40% by weight. The mechanical strength of mortar was measured, obtaining values about 60 MPa of compressive strength for BFS/SCBA systems after 270 days of curing at 20 °C. Also, microstructural properties were assessed by means of SEM, TGA, XRD, pH, electrical conductivity, FTIR spectroscopy and MIP. Results showed a good stability of matrices developed by means of alkali-activation. It was demonstrated that sugar cane bagasse ash is an interesting source for preparing alkali-activated binders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA