Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 480(8): 521-537, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37096944

RESUMO

In female mammals, the two X chromosomes are subject to epigenetic gene regulation in order to balance X-linked gene dosage with autosomes and in relation to males, which have one X and one Y chromosome. This is achieved by an intricate interplay of several processes; X-chromosome inactivation and reactivation elicit global epigenetic regulation of expression from one X chromosome in a stage-specific manner, whilst the process of X-chromosome upregulation responds to this by fine-tuning transcription levels of the second X. The germline is unique in its function of transmitting both the genetic and epigenetic information from one generation to the next, and remodelling of the X chromosome is one of the key steps in setting the stage for successful development. Here, we provide an overview of the complex dynamics of X-chromosome dosage control during embryonic and germ cell development, and aim to decipher its potential role for normal germline competency.


Assuntos
Mecanismo Genético de Compensação de Dose , Epigênese Genética , Masculino , Animais , Feminino , Cromossomo X , Células Germinativas/metabolismo , Mamíferos/genética
2.
Proc Natl Acad Sci U S A ; 120(4): e2213810120, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36669113

RESUMO

Reactivation of the inactive X chromosome is a hallmark epigenetic event during reprogramming of mouse female somatic cells to induced pluripotent stem cells (iPSCs). This involves global structural remodeling from a condensed, heterochromatic into an open, euchromatic state, thereby changing a transcriptionally inactive into an active chromosome. Despite recent advances, very little is currently known about the molecular players mediating this process and how this relates to iPSC-reprogramming in general. To gain more insight, here we perform a RNAi-based knockdown screen during iPSC-reprogramming of mouse fibroblasts. We discover factors important for X chromosome reactivation (XCR) and iPSC-reprogramming. Among those, we identify the cohesin complex member SMC1a as a key molecule with a specific function in XCR, as its knockdown greatly affects XCR without interfering with iPSC-reprogramming. Using super-resolution microscopy, we find SMC1a to be preferentially enriched on the active compared with the inactive X chromosome and that SMC1a is critical for the decompacted state of the active X. Specifically, depletion of SMC1a leads to contraction of the active X both in differentiated and in pluripotent cells, where it normally is in its most open state. In summary, we reveal cohesin as a key factor for remodeling of the X chromosome from an inactive to an active structure and that this is a critical step for XCR during iPSC-reprogramming.


Assuntos
Células-Tronco Pluripotentes Induzidas , Feminino , Animais , Camundongos , Reprogramação Celular , Inativação do Cromossomo X/genética , Cromossomo X/genética , Estruturas Cromossômicas , Coesinas
3.
Bioessays ; 44(10): e2200105, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36028473

RESUMO

The spatial organization of genomes is becoming increasingly understood. In mammals, where it is most investigated, this organization ties in with transcription, so an important research objective is to understand whether gene activity is a cause or a consequence of genome folding in space. In this regard, the phenomena of X-chromosome inactivation and reactivation open a unique window of investigation because of the singularities of the inactive X chromosome. Here we focus on the cause-consequence nexus between genome conformation and transcription and explain how recent results about the structural changes associated with inactivation and reactivation of the X chromosome shed light on this problem.


Assuntos
Inativação do Cromossomo X , Cromossomo X , Animais , Genoma/genética , Mamíferos/genética , Inativação do Cromossomo X/genética
4.
EMBO J ; 41(12): e109457, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35603814

RESUMO

The mammalian germline is characterized by extensive epigenetic reprogramming during its development into functional eggs and sperm. Specifically, the epigenome requires resetting before parental marks can be established and transmitted to the next generation. In the female germline, X-chromosome inactivation and reactivation are among the most prominent epigenetic reprogramming events, yet very little is known about their kinetics and biological function. Here, we investigate X-inactivation and reactivation dynamics using a tailor-made in vitro system of primordial germ cell-like cell (PGCLC) differentiation from mouse embryonic stem cells. We find that X-inactivation in PGCLCs in vitro and in germ cell-competent epiblast cells in vivo is moderate compared to somatic cells, and frequently characterized by escaping genes. X-inactivation is followed by step-wise X-reactivation, which is mostly completed during meiotic prophase I. Furthermore, we find that PGCLCs which fail to undergo X-inactivation or reactivate too rapidly display impaired meiotic potential. Thus, our data reveal fine-tuned X-chromosome remodelling as a critical feature of female germ cell development towards meiosis and oogenesis.


Assuntos
Células Germinativas , Meiose , Animais , Diferenciação Celular , Cromossomos , Mamíferos/genética , Meiose/genética , Camundongos , Inativação do Cromossomo X/genética
5.
PLoS Comput Biol ; 17(11): e1009582, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34762642

RESUMO

Isogenic cells cultured together show heterogeneity in their proliferation rate. To determine the differences between fast and slow-proliferating cells, we developed a method to sort cells by proliferation rate, and performed RNA-seq on slow and fast proliferating subpopulations of pluripotent mouse embryonic stem cells (mESCs) and mouse fibroblasts. We found that slowly proliferating mESCs have a more naïve pluripotent character. We identified an evolutionarily conserved proliferation-correlated transcriptomic signature that is common to all eukaryotes: fast cells have higher expression of genes for protein synthesis and protein degradation. This signature accurately predicted growth rate in yeast and cancer cells, and identified lineage-specific proliferation dynamics during development, using C. elegans scRNA-seq data. In contrast, sorting by mitochondria membrane potential revealed a highly cell-type specific mitochondria-state related transcriptome. mESCs with hyperpolarized mitochondria are fast proliferating, while the opposite is true for fibroblasts. The mitochondrial electron transport chain inhibitor antimycin affected slow and fast subpopulations differently. While a major transcriptional-signature associated with cell-to-cell heterogeneity in proliferation is conserved, the metabolic and energetic dependency of cell proliferation is cell-type specific.


Assuntos
Linhagem da Célula , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Pluripotentes/citologia , Animais , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Análise de Sequência de RNA/métodos , Transcriptoma
6.
Genome Biol ; 22(1): 171, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082786

RESUMO

BACKGROUND: Somatic cell reprogramming is the process that allows differentiated cells to revert to a pluripotent state. In contrast to the extensively studied rewiring of epigenetic and transcriptional programs required for reprogramming, the dynamics of post-transcriptional changes and their associated regulatory mechanisms remain poorly understood. Here we study the dynamics of alternative splicing changes occurring during efficient reprogramming of mouse B cells into induced pluripotent stem (iPS) cells and compare them to those occurring during reprogramming of mouse embryonic fibroblasts. RESULTS: We observe a significant overlap between alternative splicing changes detected in the two reprogramming systems, which are generally uncoupled from changes in transcriptional levels. Correlation between gene expression of potential regulators and specific clusters of alternative splicing changes enables the identification and subsequent validation of CPSF3 and hnRNP UL1 as facilitators, and TIA1 as repressor of mouse embryonic fibroblasts reprogramming. We further find that these RNA-binding proteins control partially overlapping programs of splicing regulation, involving genes relevant for developmental and morphogenetic processes. CONCLUSIONS: Our results reveal common programs of splicing regulation during reprogramming of different cell types and identify three novel regulators of this process and their targets.


Assuntos
Processamento Alternativo/genética , Reprogramação Celular/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Antígeno-1 Intracelular de Células T/metabolismo , Animais , Linfócitos B/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos
7.
Nat Commun ; 12(1): 3499, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108480

RESUMO

A hallmark of chromosome organization is the partition into transcriptionally active A and repressed B compartments, and into topologically associating domains (TADs). Both structures were regarded to be absent from the inactive mouse X chromosome, but to be re-established with transcriptional reactivation and chromatin opening during X-reactivation. Here, we combine a tailor-made mouse iPSC reprogramming system and high-resolution Hi-C to produce a time course combining gene reactivation, chromatin opening and chromosome topology during X-reactivation. Contrary to previous observations, we observe A/B-like compartments on the inactive X harbouring multiple subcompartments. While partial X-reactivation initiates within a compartment rich in X-inactivation escapees, it then occurs rapidly along the chromosome, concomitant with downregulation of Xist. Importantly, we find that TAD formation precedes transcription and initiates from Xist-poor compartments. Here, we show that TAD formation and transcriptional reactivation are causally independent during X-reactivation while establishing Xist as a common denominator.


Assuntos
Transcrição Gênica , Inativação do Cromossomo X/genética , Cromossomo X/metabolismo , Animais , Reprogramação Celular/genética , Montagem e Desmontagem da Cromatina , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cromatina Sexual/genética , Cromatina Sexual/metabolismo , Cromossomo X/genética
8.
Aging Cell ; 20(5): e13360, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33908703

RESUMO

Female fertility is inversely correlated with maternal age due to a depletion of the oocyte pool and a reduction in oocyte developmental competence. Few studies have addressed the effect of maternal age on the human mature oocyte (MII) transcriptome, which is established during oocyte growth and maturation, however, the pathways involved remain unclear. Here, we characterize and compare the transcriptomes of a large cohort of fully grown germinal vesicle stage (GV) and in vitro matured (IVM-MII) oocytes from women of varying reproductive age. First, we identified two clusters of cells reflecting the oocyte maturation stage (GV and IVM-MII) with 4445 and 324 putative marker genes, respectively. Furthermore, we identified genes for which transcript representation either progressively increased or decreased with age. Our results indicate that the transcriptome is more affected by age in IVM-MII oocytes (1219 genes) than in GV oocytes (596 genes). In particular, we found that transcripts of genes involved in chromosome segregation and RNA splicing significantly increased representation with age, while genes related to mitochondrial activity showed a lower representation. Gene regulatory network analysis facilitated the identification of potential upstream master regulators of the genes involved in those biological functions. Our analysis suggests that advanced maternal age does not globally affect the oocyte transcriptome at GV or IVM-MII stages. Nonetheless, hundreds of genes displayed altered transcript representation, particularly in IVM-MII oocytes, which might contribute to the age-related quality decline in human oocytes.


Assuntos
Envelhecimento/genética , Oócitos/metabolismo , Transcriptoma , Adolescente , Adulto , Índice de Massa Corporal , Feminino , Regulação da Expressão Gênica , Humanos , Oócitos/crescimento & desenvolvimento , RNA-Seq , Análise de Célula Única , Adulto Jovem
10.
Epigenetics Chromatin ; 12(1): 38, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31221220

RESUMO

BACKGROUND: In order to prepare the genome for gametogenesis, primordial germ cells (PGCs) undergo extensive epigenetic reprogramming during migration toward the gonads in mammalian embryos. This includes changes on a genome-wide scale and additionally in females the remodeling of the inactive X-chromosome to enable X-chromosome reactivation (XCR). However, if global remodeling and X-chromosomal remodeling are related, how they occur in PGCs in vivo in relation to their migration progress and which factors are important are unknown. RESULTS: Here we identify the germ cell determinant PR-domain containing protein 14 (PRDM14) as the first known factor that is instrumental for both global reprogramming and X-chromosomal reprogramming in migrating mouse PGCs. We find that global upregulation of the repressive histone H3 lysine 27 trimethylation (H3K27me3) mark is PRDM14 dosage dependent in PGCs of both sexes. When focusing on XCR, we observed that PRDM14 is required for removal of H3K27me3 from the inactive X-chromosome, which, in contrast to global upregulation, takes place progressively along the PGC migration path. Furthermore, we show that global and X-chromosomal reprogramming of H3K27me3 are functionally separable, despite their common regulation by PRDM14. CONCLUSIONS: In summary, here we provide new insight and spatiotemporal resolution to the progression and regulation of epigenome remodeling along mouse PGC migration in vivo and link epigenetic reprogramming to its developmental context.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Células Germinativas Embrionárias/metabolismo , Histonas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Cromossomo X/metabolismo , Animais , Movimento Celular/fisiologia , Reprogramação Celular , Metilação de DNA , Proteínas de Ligação a DNA/genética , Células Germinativas Embrionárias/citologia , Epigênese Genética , Feminino , Histonas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Ativação Transcricional , Cromossomo X/genética , Inativação do Cromossomo X
11.
PLoS One ; 12(8): e0182568, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28796844

RESUMO

In mammals, monoallelic gene expression can result from X-chromosome inactivation, genomic imprinting, and random monoallelic expression (RMAE). Epigenetic regulation of RMAE is not fully understood. Here we analyze allelic imbalance in chromatin state of autosomal genes using ChIP-seq in a clonal cell line. We identify approximately 3.7% of autosomal genes that show significant differences between chromatin states of two alleles. Allelic regulation is represented among several functional gene categories including histones, chromatin modifiers, and multiple early developmental regulators. Most cases of allelic skew are produced by quantitative differences between two allelic chromatic states that belong to the same gross type (active, silent, or bivalent). Combinations of allelic states of different types are possible but less frequent. When different chromatin marks are skewed on the same gene, their skew is coordinated as a result of quantitative relationships between these marks on each individual allele. Finally, combination of allele-specific densities of chromatin marks is a quantitative predictor of allelic skew in gene expression.


Assuntos
Desequilíbrio Alélico , Cromatina/genética , Alelos , Animais , Linhagem Celular , Epigênese Genética , Feminino , Fibroblastos/metabolismo , Expressão Gênica , Genoma , Impressão Genômica , Masculino , Camundongos , Camundongos da Linhagem 129
13.
Proc Natl Acad Sci U S A ; 114(7): 1619-1624, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28143937

RESUMO

Rett syndrome (RS) is a debilitating neurological disorder affecting mostly girls with heterozygous mutations in the gene encoding the methyl-CpG-binding protein MeCP2 on the X chromosome. Because restoration of MeCP2 expression in a mouse model reverses neurologic deficits in adult animals, reactivation of the wild-type copy of MeCP2 on the inactive X chromosome (Xi) presents a therapeutic opportunity in RS. To identify genes involved in MeCP2 silencing, we screened a library of 60,000 shRNAs using a cell line with a MeCP2 reporter on the Xi and found 30 genes clustered in seven functional groups. More than half encoded proteins with known enzymatic activity, and six were members of the bone morphogenetic protein (BMP)/TGF-ß pathway. shRNAs directed against each of these six genes down-regulated X-inactive specific transcript (XIST), a key player in X-chromosome inactivation that encodes an RNA that coats the silent X chromosome, and modulation of regulators of this pathway both in cell culture and in mice demonstrated robust regulation of XIST. Moreover, we show that Rnf12, an X-encoded ubiquitin ligase important for initiation of X-chromosome inactivation and XIST transcription in ES cells, also plays a role in maintenance of the inactive state through regulation of BMP/TGF-ß signaling. Our results identify pharmacologically suitable targets for reactivation of MeCP2 on the Xi and a genetic circuitry that maintains XIST expression and X-chromosome inactivation in differentiated cells.


Assuntos
Proteína Morfogenética Óssea 2/genética , Proteína 2 de Ligação a Metil-CpG/genética , RNA Longo não Codificante/genética , Fator de Crescimento Transformador beta/genética , Inativação do Cromossomo X , Animais , Linhagem Celular , Feminino , Perfilação da Expressão Gênica , Biblioteca Gênica , Humanos , Camundongos , RNA Interferente Pequeno/genética , Síndrome de Rett/genética , Transdução de Sinais/genética , Ubiquitina-Proteína Ligases/genética
14.
Mol Cell ; 64(4): 645-658, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27863225

RESUMO

The cellular plasticity of pluripotent stem cells is thought to be sustained by genomic regions that display both active and repressive chromatin properties. These regions exhibit low levels of gene expression, yet the mechanisms controlling these levels remain unknown. Here, we describe Elongin BC as a binding factor at the promoters of bivalent sites. Biochemical and genome-wide analyses show that Elongin BC is associated with Polycomb Repressive Complex 2 (PRC2) in pluripotent stem cells. Elongin BC is recruited to chromatin by the PRC2-associated factor EPOP (Elongin BC and Polycomb Repressive Complex 2 Associated Protein, also termed C17orf96, esPRC2p48, E130012A19Rik), a protein expressed in the inner cell mass of the mouse blastocyst. Both EPOP and Elongin BC are required to maintain low levels of expression at PRC2 genomic targets. Our results indicate that keeping the balance between activating and repressive cues is a more general feature of chromatin in pluripotent stem cells than previously appreciated.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/genética , Células-Tronco Pluripotentes/metabolismo , Complexo Repressor Polycomb 2/genética , Fatores de Transcrição/genética , Animais , Diferenciação Celular , Cromatina/química , Cromatina/metabolismo , Proteínas Cromossômicas não Histona , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , Elonguina , Implantação do Embrião , Embrião de Mamíferos , Histonas/genética , Histonas/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Pluripotentes/citologia , Complexo Repressor Polycomb 2/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/metabolismo , Transcrição Gênica
15.
Semin Cell Dev Biol ; 56: 88-99, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27112543

RESUMO

With the emergence of sex-determination by sex chromosomes, which differ in composition and number between males and females, appeared the need to equalize X-chromosomal gene dosage between the sexes. Mammals have devised the strategy of X-chromosome inactivation (XCI), in which one of the two X-chromosomes is rendered transcriptionally silent in females. In the mouse, the best-studied model organism with respect to XCI, this inactivation process occurs in different forms, imprinted and random, interspersed by periods of X-chromosome reactivation (XCR), which is needed to switch between the different modes of XCI. In this review, I describe the recent advances with respect to the developmental control of XCI and XCR and in particular their link to differentiation and pluripotency. Furthermore, I review the mechanisms, which influence the timing and choice, with which one of the two X-chromosomes is chosen for inactivation during random XCI. This has an impact on how females are mosaics with regard to which X-chromosome is active in different cells, which has implications on the severity of diseases caused by X-linked mutations.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Inativação do Cromossomo X/genética , Animais , Diferenciação Celular/genética , Impressão Genômica , Humanos , Mosaicismo
16.
Proc Natl Acad Sci U S A ; 113(50): 14366-14371, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-28182563

RESUMO

X-chromosome inactivation is a mechanism of dosage compensation in which one of the two X chromosomes in female mammals is transcriptionally silenced. Once established, silencing of the inactive X (Xi) is robust and difficult to reverse pharmacologically. However, the Xi is a reservoir of >1,000 functional genes that could be potentially tapped to treat X-linked disease. To identify compounds that could reactivate the Xi, here we screened ∼367,000 small molecules in an automated high-content screen using an Xi-linked GFP reporter in mouse fibroblasts. Given the robust nature of silencing, we sensitized the screen by "priming" cells with the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (5azadC). Compounds that elicited GFP activity include VX680, MLN8237, and 5azadC, which are known to target the Aurora kinase and DNA methylation pathways. We demonstrate that the combinations of VX680 and 5azadC, as well as MLN8237 and 5azadC, synergistically up-regulate genes on the Xi. Thus, our work identifies a synergism between the DNA methylation and Aurora kinase pathways as being one of interest for possible pharmacological reactivation of the Xi.


Assuntos
Aurora Quinases/antagonistas & inibidores , Metilação de DNA/efeitos dos fármacos , Inativação do Cromossomo X/efeitos dos fármacos , Animais , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/genética , Aurora Quinase B/antagonistas & inibidores , Aurora Quinase B/genética , Aurora Quinases/genética , Azacitidina/administração & dosagem , Azacitidina/análogos & derivados , Azepinas/administração & dosagem , Linhagem Celular , Decitabina , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Feminino , Técnicas de Silenciamento de Genes , Genes Ligados ao Cromossomo X , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ensaios de Triagem em Larga Escala , Camundongos , Camundongos Transgênicos , Piperazinas/administração & dosagem , Pirimidinas/administração & dosagem , Cromossomo X/efeitos dos fármacos , Cromossomo X/genética
17.
Proc Natl Acad Sci U S A ; 112(47): 14415-22, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26489649

RESUMO

The long noncoding X-inactivation-specific transcript (Xist gene) is responsible for mammalian X-chromosome dosage compensation between the sexes, the process by which one of the two X chromosomes is inactivated in the female soma. Xist is essential for both the random and imprinted forms of X-chromosome inactivation. In the imprinted form, Xist is paternally marked to be expressed in female embryos. To investigate the mechanism of Xist imprinting, we introduce Xist transgenes (Tg) into the male germ line. Although ectopic high-level Xist expression on autosomes can be compatible with viability, transgenic animals demonstrate reduced fitness, subfertility, defective meiotic pairing, and other germ-cell abnormalities. In the progeny, paternal-specific expression is recapitulated by the 200-kb Xist Tg. However, Xist imprinting occurs efficiently only when it is in an unpaired or unpartnered state during male meiosis. When transmitted from a hemizygous father (+/Tg), the Xist Tg demonstrates paternal-specific expression in the early embryo. When transmitted by a homozygous father (Tg/Tg), the Tg fails to show imprinted expression. Thus, Xist imprinting is directed by sequences within a 200-kb X-linked region, and the hemizygous (unpaired) state of the Xist region promotes its imprinting in the male germ line.


Assuntos
Impressão Genômica , Células Germinativas/metabolismo , RNA Longo não Codificante/genética , Animais , Blastocisto/metabolismo , Epigênese Genética , Feminino , Hemizigoto , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Masculino , Camundongos Transgênicos , Fenótipo , RNA Longo não Codificante/síntese química , RNA Longo não Codificante/metabolismo , Transgenes
18.
Science ; 349(6245)2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26089354

RESUMO

The inactive X chromosome (Xi) serves as a model to understand gene silencing on a global scale. Here, we perform "identification of direct RNA interacting proteins" (iDRiP) to isolate a comprehensive protein interactome for Xist, an RNA required for Xi silencing. We discover multiple classes of interactors-including cohesins, condensins, topoisomerases, RNA helicases, chromatin remodelers, and modifiers-that synergistically repress Xi transcription. Inhibiting two or three interactors destabilizes silencing. Although Xist attracts some interactors, it repels architectural factors. Xist evicts cohesins from the Xi and directs an Xi-specific chromosome conformation. Upon deleting Xist, the Xi acquires the cohesin-binding and chromosomal architecture of the active X. Our study unveils many layers of Xi repression and demonstrates a central role for RNA in the topological organization of mammalian chromosomes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , RNA Longo não Codificante/metabolismo , Inativação do Cromossomo X , Cromossomo X/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Células Cultivadas , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Inativação Gênica , Camundongos , Complexos Multiproteicos/metabolismo , Conformação de Ácido Nucleico , Proteômica , RNA Helicases/metabolismo , Cromossomo X/química , Cromossomo X/genética , Coesinas
19.
Genetics ; 200(2): 537-49, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25858912

RESUMO

In mammals, several classes of monoallelic genes have been identified, including those subject to X-chromosome inactivation (XCI), genomic imprinting, and random monoallelic expression (RMAE). However, the extent to which these epigenetic phenomena are influenced by underlying genetic variation is unknown. Here we perform a systematic classification of allelic imbalance in mouse hybrids derived from reciprocal crosses of divergent strains. We observe that deviation from balanced biallelic expression is common, occurring in ∼20% of the mouse transcriptome in a given tissue. Allelic imbalance attributed to genotypic variation is by far the most prevalent class and typically is tissue-specific. However, some genotype-based imbalance is maintained across tissues and is associated with greater genetic variation, especially in 5' and 3' termini of transcripts. We further identify novel random monoallelic and imprinted genes and find that genotype can modify penetrance of parental origin even in the setting of large imprinted regions. Examination of nascent transcripts in single cells from inbred parental strains reveals that genes showing genotype-based imbalance in hybrids can also exhibit monoallelic expression in isogenic backgrounds. This surprising observation may suggest a competition between alleles and/or reflect the combined impact of cis- and trans-acting variation on expression of a given gene. Our findings provide novel insights into gene regulation and may be relevant to human genetic variation and disease.


Assuntos
Desequilíbrio Alélico , Transcriptoma , Alelos , Animais , Análise por Conglomerados , Cruzamentos Genéticos , Perfilação da Expressão Gênica , Variação Genética , Impressão Genômica , Genótipo , Camundongos , Especificidade de Órgãos/genética
20.
RNA Biol ; 11(7): 798-807, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25137047

RESUMO

X-chromosome inactivation (XCI) in female mammals is a dramatic example of epigenetic gene regulation, which entails the silencing of an entire chromosome through a wide range of mechanisms involving noncoding RNAs, chromatin-modifications, and DNA-methylation. While XCI is associated with the differentiated cell state, it is reversed by X-chromosome reactivation (XCR) ex vivo in pluripotent stem cells and in vivo in the early mouse embryo and the germline. Critical in the regulation of XCI vs. XCR is the X-inactivation center, a multigene locus on the X-chromosome harboring several long noncoding RNA genes including, most prominently, Xist and Tsix. These genes, which sit at the top of the XCI hierarchy, are by themselves controlled by pluripotency factors, coupling XCR with the naïve pluripotent stem cell state. In this point-of-view article we review the latest findings regarding this intricate relationship between cell differentiation state and epigenetic control of the X-chromosome. In particular, we discuss the emerging picture of complex multifactorial regulatory mechanisms, ensuring both a fine-tuned and robust X-reactivation process.


Assuntos
Células-Tronco Pluripotentes/metabolismo , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/metabolismo , Inativação do Cromossomo X , Animais , Diferenciação Celular , Feminino , Humanos , Camundongos , Cromossomo X/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...