Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Med Inform Decis Mak ; 23(1): 178, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689645

RESUMO

BACKGROUND: Food frequency questionnaires (FFQs) are one of the most useful tools for studying and understanding diet-disease relationships. However, because FFQs are self-reported data, they are susceptible to response bias, social desirability bias, and misclassification. Currently, several methods have been created to combat these issues by modelling the measurement error in diet-disease relationships. METHOD: In this paper, a novel machine learning method is proposed to adjust for measurement error found in misreported data by using a random forest (RF) classifier to label the responses in the FFQ based on the input dataset and creating an algorithm that adjusts the measurement error. We demonstrate this method by addressing underreporting in selected FFQ responses. RESULT: According to the results, we have high model accuracies ranging from 78% to 92% in participant collected data and 88% in simulated data. CONCLUSION: This shows that our proposed method of using a RF classifier and an error adjustment algorithm is efficient to correct most of the underreported entries in the FFQ dataset and could be used independent of diet-disease models. This could help nutrition researchers and other experts to use dietary data estimated by FFQs with less measurement error and create models from the data with minimal noise.


Assuntos
Algoritmos , Aprendizado de Máquina Supervisionado , Humanos , Algoritmo Florestas Aleatórias , Aprendizado de Máquina , Autorrelato
2.
IEEE Trans Biomed Eng ; 66(3): 864-872, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30059291

RESUMO

In the repeatability analysis, when the measurement is the mean value of a parametric map within a region of interest (ROI), the ROI size becomes important as by increasing the size, the measurement will have a smaller variance. This is important in decision-making in prospective clinical studies of brain when the ROI size is variable, e.g., in monitoring the effect of treatment on lesions by quantitative MRI, and in particular when the ROI is small, e.g., in the case of brain lesions in multiple sclerosis. Thus, methods to estimate repeatability measures for arbitrary sizes of ROI are desired. We propose a statistical model of the values of parametric map within the ROI and a method to approximate the model parameters, based on which we estimate a number of repeatability measures including repeatability coefficient, coefficient of variation, and intraclass correlation coefficient for an ROI with an arbitrary size. We also show how this gives an insight into related problems such as spatial smoothing in voxel-wise analysis. Experiments are conducted on simulated data as well as on scan-rescan brain MRI of healthy subjects. The main application of this study is the adjustment of the decision threshold based on the lesion size in treatment monitoring.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Adulto , Biomarcadores , Simulação por Computador , Bases de Dados Factuais , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Adulto Jovem
3.
PLoS One ; 12(4): e0175111, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28384282

RESUMO

Rapid growth in scientific output requires methods for quantitative synthesis of prior research, yet current meta-analysis methods limit aggregation to studies with similar designs. Here we describe and validate Generalized Model Aggregation (GMA), which allows researchers to combine prior estimated models of a phenomenon into a quantitative meta-model, while imposing few restrictions on the structure of prior models or on the meta-model. In an empirical validation, building on 27 published equations from 16 studies, GMA provides a predictive equation for Basal Metabolic Rate that outperforms existing models, identifies novel nonlinearities, and estimates biases in various measurement methods. Additional numerical examples demonstrate the ability of GMA to obtain unbiased estimates from potentially mis-specified prior studies. Thus, in various domains, GMA can leverage previous findings to compare alternative theories, advance new models, and assess the reliability of prior studies, extending meta-analysis toolbox to many new problems.


Assuntos
Metanálise como Assunto , Pesquisa Empírica , Modelos Teóricos
4.
Transl Oncol ; 8(3): 137-46, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26055170

RESUMO

OBJECTIVES: This study evaluates the repeatability of brain perfusion using dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with a variety of post-processing methods. METHODS: Thirty-two patients with newly diagnosed glioblastoma were recruited. On a 3-T MRI using a dual-echo, gradient-echo spin-echo DSC-MRI protocol, the patients were scanned twice 1 to 5 days apart. Perfusion maps including cerebral blood volume (CBV) and cerebral blood flow (CBF) were generated using two contrast agent leakage correction methods, along with testing normalization to reference tissue, and application of arterial input function (AIF). Repeatability of CBV and CBF within tumor regions and healthy tissues, identified by structural images, was assessed with intra-class correlation coefficients (ICCs) and repeatability coefficients (RCs). Coefficients of variation (CVs) were reported for selected methods. RESULTS: CBV and CBF were highly repeatable within tumor with ICC values up to 0.97. However, both CBV and CBF showed lower ICCs for healthy cortical tissues (up to 0.83), healthy gray matter (up to 0.95), and healthy white matter (WM; up to 0.93). The values of CV ranged from 6% to 10% in tumor and 3% to 11% in healthy tissues. The values of RC relative to the mean value of measurement within healthy WM ranged from 22% to 42% in tumor and 7% to 43% in healthy tissues. These percentages show how much variation in perfusion parameter, relative to that in healthy WM, we expect to observe to consider it statistically significant. We also found that normalization improved repeatability, but AIF deconvolution did not. CONCLUSIONS: DSC-MRI is highly repeatable in high-grade glioma patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA