Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Biosens Bioelectron ; 262: 116546, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38968774

RESUMO

Electronic communication in natural systems makes use, inter alia, of molecular transmission, where electron transfer occurs within networks of redox reactions, which play a vital role in many physiological systems. In view of the limited understanding of redox signaling, we developed an approach and an electrochemical-optical lab-on-a-chip to observe cellular responses in localized redox environments. The developed fluidic micro-system uses electrogenetic bacteria in which a cellular response is activated to electrically and chemically induced stimulations. Specifically, controlled environments for the cells are created by using microelectrodes to generate spatiotemporal redox gradients. The in-situ cellular responses at both single-cell and population levels are monitored by optical microscopy. The elicited electrogenetic fluorescence intensities after 210 min in response to electrochemical and chemical activation were 1.3 × 108±0.30 × 108 arbitrary units (A.U.) and 1.2 × 108±0.30 × 108 A.U. per cell population, respectively, and 1.05 ± 0.01 A.U. and 1.05 ± 0.01 A.U. per-cell, respectively. We demonstrated that redox molecules' mass transfer between the electrode and cells - and not the applied electrical field - activated the electrogenetic cells. Specifically, we found an oriented amplified electrogenetic response on the charged electrodes' downstream side, which was determined by the location of the stimulating electrodes and the flow profile. We then focused on the cellular responses and observed distinct subpopulations that were attributed to electrochemical rather than chemical stimulation, with the distance between the cells and the stimulating electrode being the main determinant. These observations provide a comprehensive understanding of the mechanisms by which diffusible redox mediators serve as electron shuttles, imposing context and activating electrogenetic responses.

2.
Schizophr Res ; 269: 71-78, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38749320

RESUMO

One-third of people with schizophrenia have elevated levels of anti-gliadin antibodies (AGA IgG). A 5-week randomized double-blind pilot study was performed in 2014-2017 in an inpatient setting to test the effect of a gluten-free diet (GFD) on participants with schizophrenia or schizoaffective disorder who also had elevated AGA IgG (≥ 20 U) but were negative for celiac disease. This earlier pilot study reported that the GFD-group showed improved gastrointestinal and psychiatric symptoms, and also improvements in TNF-α and the inflammatory cytokine IL-23. Here, we performed measurements of these banked plasma samples to detect levels of oxidative stress (OxSt) using a recently developed iridium (Ir)-reducing capacity assay. Triplicate measurements of these samples showed an Intraclass Correlation Coefficient of 0.84 which indicates good reproducibility. Further, a comparison of the OxSt measurements at the baseline and 5-week end-point for this small sample size shows that the GFD-group (N = 7) had lowered OxSt levels compared to the gluten-containing diet group (GCD; N = 9; p = 0.05). Finally, we showed that improvements in OxSt over these 5 weeks were correlated to improvements in gastrointestinal (r = +0.64, p = 0.0073) and psychiatric (r = +0.52, p = 0.039) symptoms. Also, we showed a possible association between the decrease in OxSt and the lowered levels of IL-23 (r = +0.44, p = 0.087), although without statistical significance. Thus, the Ir-reducing capacity assay provides a simple, objective measure of OxSt with the results providing further evidence that inflammation, redox dysregulation and OxSt may mediate interactions between the gut and brain.


Assuntos
Dieta Livre de Glúten , Estresse Oxidativo , Esquizofrenia , Humanos , Esquizofrenia/dietoterapia , Esquizofrenia/sangue , Projetos Piloto , Estresse Oxidativo/fisiologia , Masculino , Adulto , Feminino , Pessoa de Meia-Idade , Método Duplo-Cego , Transtornos Psicóticos/dietoterapia , Transtornos Psicóticos/sangue , Transtornos Psicóticos/imunologia , Gliadina/imunologia
3.
Sci Rep ; 14(1): 9666, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671069

RESUMO

Redox is a unique, programmable modality capable of bridging communication between biology and electronics. Previous studies have shown that the E. coli redox-responsive OxyRS regulon can be re-wired to accept electrochemically generated hydrogen peroxide (H2O2) as an inducer of gene expression. Here we report that the redox-active phenolic plant signaling molecule acetosyringone (AS) can also induce gene expression from the OxyRS regulon. AS must be oxidized, however, as the reduced state present under normal conditions cannot induce gene expression. Thus, AS serves as a "pro-signaling molecule" that can be activated by its oxidation-in our case by application of oxidizing potential to an electrode. We show that the OxyRS regulon is not induced electrochemically if the imposed electrode potential is in the mid-physiological range. Electronically sliding the applied potential to either oxidative or reductive extremes induces this regulon but through different mechanisms: reduction of O2 to form H2O2 or oxidation of AS. Fundamentally, this work reinforces the emerging concept that redox signaling depends more on molecular activities than molecular structure. From an applications perspective, the creation of an electronically programmed "pro-signal" dramatically expands the toolbox for electronic control of biological responses in microbes, including in complex environments, cell-based materials, and biomanufacturing.


Assuntos
Escherichia coli , Oxirredução , Transdução de Sinais , Escherichia coli/genética , Escherichia coli/metabolismo , Peróxido de Hidrogênio , Regulon/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Fenóis/química , Fenóis/metabolismo
4.
Molecules ; 29(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338306

RESUMO

Chitosan-based materials have broad applications, from biotechnology to pharmaceutics. Recent experiments showed that the degree and pattern of acetylation along the chitosan chain modulate its biological and physicochemical properties; however, the molecular mechanism remains unknown. Here, we report, to the best of our knowledge, the first de novo all-atom molecular dynamics (MD) simulations to investigate chitosan's self-assembly process at different degrees and patterns of acetylation. Simulations revealed that 10 mer chitosan chains with 50% acetylation in either block or alternating patterns associate to form ordered nanofibrils comprised of mainly antiparallel chains in agreement with the fiber diffraction data of deacetylated chitosan. Surprisingly, regardless of the acetylation pattern, the same intermolecular hydrogen bonds mediate fibril sheet formation while water-mediated interactions stabilize sheet-sheet stacking. Moreover, acetylated units are involved in forming strong intermolecular hydrogen bonds (NH-O6 and O6H-O7), which offers an explanation for the experimental observation that increased acetylation lowers chitosan's solubility. Taken together, the present study provides atomic-level understanding the role of acetylation plays in modulating chitosan's physiochemical properties, contributing to the rational design of chitosan-based materials with the ability to tune by its degree and pattern of acetylation. Additionally, we disseminate the improved molecular mechanics parameters that can be applied in MD studies to further understand chitosan-based materials.


Assuntos
Quitosana , Quitosana/química , Acetilação , Simulação de Dinâmica Molecular
5.
Adv Sci (Weinh) ; 11(12): e2307606, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225697

RESUMO

Biology remains the envy of flexible soft matter fabrication because it can satisfy multiple functional needs by organizing a small set of proteins and polysaccharides into hierarchical systems with controlled heterogeneity in composition and microstructure. Here, it is reported that controlled, mild electronic inputs (<10 V; <20 min) induce a homogeneous gelatin-chitosan mixture to undergo sorting and bottom-up self-assembly into a Janus film with compositional gradient (i.e., from chitosan-enriched layer to chitosan/gelatin-contained layer) and tunable dense-porous gradient microstructures (e.g., porosity, pore size, and ratio of dense to porous layers). This Janus film performs is shown multiple functions for guided bone regeneration: the integration of compositional and microstructural features confers flexible mechanics, asymmetric properties for interfacial wettability, molecular transport (directional growth factor release), and cellular responses (prevents fibroblast infiltration but promotes osteoblast growth and differentiation). Overall, this work demonstrates the versatility of electrofabrication for the customized manufacturing of functional gradient soft matter.


Assuntos
Quitosana , Quitosana/farmacologia , Gelatina/química , Regeneração Óssea , Movimento Celular , Osteoblastos
6.
Curr Opin Biotechnol ; 85: 103052, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38150921

RESUMO

The ever-growing influence of technology in our lives has led to an increasing interest in the development of smart electronic devices to interrogate and control biological systems. Recently, redox-mediated electrogenetics introduced a novel avenue that enables direct bioelectronic control at the genetic level. In this review, we discuss recent advances in methodologies for bioelectronic control, ranging from electrical stimulation to engineering efforts that allow traditionally unexcitable cells to be electrically 'programmable.' Alongside ion-transport signaling, we suggest redox as a route for rational engineering because it is a native form of electronic communication in biology. Using redox as a common language allows the interfacing of electronics and biology. This newfound connection opens a gateway of possibilities for next-generation bioelectronic tools.


Assuntos
Eletrônica , Transdução de Sinais , Transdução de Sinais/genética , Oxirredução
7.
Nat Commun ; 14(1): 8514, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129428

RESUMO

Microelectronic devices can directly communicate with biology, as electronic information can be transmitted via redox reactions within biological systems. By engineering biology's native redox networks, we enable electronic interrogation and control of biological systems at several hierarchical levels: proteins, cells, and cell consortia. First, electro-biofabrication facilitates on-device biological component assembly. Then, electrode-actuated redox data transmission and redox-linked synthetic biology allows programming of enzyme activity and closed-loop electrogenetic control of cellular function. Specifically, horseradish peroxidase is assembled onto interdigitated electrodes where electrode-generated hydrogen peroxide controls its activity. E. coli's stress response regulon, oxyRS, is rewired to enable algorithm-based feedback control of gene expression, including an eCRISPR module that switches cell-cell quorum sensing communication from one autoinducer to another-creating an electronically controlled 'bilingual' cell. Then, these disparate redox-guided devices are wirelessly connected, enabling real-time communication and user-based control. We suggest these methodologies will help us to better understand and develop sophisticated control for biology.


Assuntos
Escherichia coli , Proteínas , Escherichia coli/genética , Escherichia coli/metabolismo , Retroalimentação , Proteínas/metabolismo , Eletrônica , Oxirredução
8.
ACS Appl Mater Interfaces ; 15(35): 41362-41372, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37610347

RESUMO

Molybdenum disulfide (MoS2) is a representative two-dimensional transition metal dichalcogenide and has a unique electronic structure and associated physicochemical properties. The redox property of MoS2 has recently attracted significant attention from various fields, such as biomedical applications. Intriguingly, MoS2 functions as an antioxidant in certain applications and as a pro-oxidant in others. We use the mediated electrochemical probing method to understand the redox behavior of MoS2. This method reveals that MoS2 (i) has a reversible and fast redox activity at a mild potential (between -0.20 and +0.25 V vs Ag/AgCl), (ii) functions as an antioxidant for molecules that have different redox mechanisms (electron or hydrogen atom transfer), and (iii) is electrochemically or molecularly rechargeable. Finally, we show that MoS2 reduces oxidized molecules more efficiently than the potent natural antioxidant, curcumin. This study enhances our understanding of MoS2 and shows its potential as an advanced antioxidant reservoir.

9.
Biomacromolecules ; 24(6): 2409-2432, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37155361

RESUMO

Twenty years ago, this journal published a review entitled "Biofabrication with Chitosan" based on the observations that (i) chitosan could be electrodeposited using low voltage electrical inputs (typically less than 5 V) and (ii) the enzyme tyrosinase could be used to graft proteins (via accessible tyrosine residues) to chitosan. Here, we provide a progress report on the coupling of electronic inputs with advanced biological methods for the fabrication of biopolymer-based hydrogel films. In many cases, the initial observations of chitosan's electrodeposition have been extended and generalized: mechanisms have been established for the electrodeposition of various other biological polymers (proteins and polysaccharides), and electrodeposition has been shown to allow the precise control of the hydrogel's emergent microstructure. In addition, the use of biotechnological methods to confer function has been extended from tyrosinase conjugation to the use of protein engineering to create genetically fused assembly tags (short sequences of accessible amino acid residues) that facilitate the attachment of function-conferring proteins to electrodeposited films using alternative enzymes (e.g., transglutaminase), metal chelation, and electrochemically induced oxidative mechanisms. Over these 20 years, the contributions from numerous groups have also identified exciting opportunities. First, electrochemistry provides unique capabilities to impose chemical and electrical cues that can induce assembly while controlling the emergent microstructure. Second, it is clear that the detailed mechanisms of biopolymer self-assembly (i.e., chitosan gel formation) are far more complex than anticipated, and this provides a rich opportunity both for fundamental inquiry and for the creation of high performance and sustainable material systems. Third, the mild conditions used for electrodeposition allow cells to be co-deposited for the fabrication of living materials. Finally, the applications have been expanded from biosensing and lab-on-a-chip systems to bioelectronic and medical materials. We suggest that electro-biofabrication is poised to emerge as an enabling additive manufacturing method especially suited for life science applications and to bridge communication between our biological and technological worlds.


Assuntos
Quitosana , Quitosana/química , Monofenol Mono-Oxigenase/química , Hidrogéis , Proteínas , Biopolímeros
10.
Biotechnol Bioeng ; 120(5): 1366-1381, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36710487

RESUMO

To probe signal propagation and genetic actuation in microbial consortia, we have coopted the components of both redox and quorum sensing (QS) signaling into a communication network for guiding composition by "programming" cell lysis. Here, we use an electrode to generate hydrogen peroxide as a redox cue that determines consortia composition. The oxidative stress regulon of Escherichia coli, OxyR, is employed to receive and transform this signal into a QS signal that coordinates the lysis of a subpopulation of cells. We examine a suite of information transfer modalities including "monoculture" and "transmitter-receiver" models, as well as a series of genetic circuits that introduce time-delays for altering information relay, thereby expanding design space. A simple mathematical model aids in developing communication schemes that accommodate the transient nature of redox signals and the "collective" attributes of QS signals. We suggest this platform methodology will be useful in understanding and controlling synthetic microbial consortia for a variety of applications, including biomanufacturing and biocontainment.


Assuntos
Consórcios Microbianos , Percepção de Quorum , Consórcios Microbianos/genética , Percepção de Quorum/genética , Escherichia coli/genética , Transdução de Sinais/genética , Oxirredução
11.
Small ; 18(48): e2204837, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36207286

RESUMO

Janus porous biomaterials are gaining increasing attention and there are considerable efforts to develop simple, rapid, and scalable methods capable of tuning micro- and macro-structures. Here, a single-step electro-fabrication method to create a Janus porous film by the electrodeposition of the amino-polysaccharide chitosan is reported. Specifically, a Janus structure emerges spontaneously when electrodeposition is performed at sub-ambient temperature (0-5 °C). Sub-ambient temperature electrodeposition experiments show that: a Janus microstructure emerges (potentially as the result of a subtle alteration of the intermolecular interactions responsible for self-assembly); important microstructural features (pore size, porosity, and thicknesses) can be tuned by conditions; and this method is readily scalable (vs serial printing) and can yield complex tubular structures with Janus faces. In vitro studies demonstrate anisotropic cell guidance, and in vivo studies using a rat calvarial defect model further confirm the beneficial features of such Janus porous film for guided bone regeneration. In summary, these results further demonstrate that electro-fabrication provides a simple and scalable platform technology for the controlled functional structures of soft matter for applications in regenerative medicine.


Assuntos
Materiais Biocompatíveis , Galvanoplastia , Animais , Ratos , Porosidade , Temperatura , Medicina Regenerativa
12.
Biotechniques ; 73(5): 233-237, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36300351

RESUMO

Whole-cell biosensing links the sensing and computing capabilities of microbes to the generation of a detectable reporter. Whole cells enable dynamic biological computation (filtered noise, amplified signals, logic gating etc.). Enzymatic reporters enable in situ signal amplification. Electrochemical measurements are easily quantified and work in turbid environments. In this work we show how the coexpression of the lactose permease, LacY, dramatically improves electrochemical sensing of ß-galactosidase (LacZ) expressed as a reporter in whole cells. The permease facilitates transport of the LacZ substrate, 4-aminophenyl ß-d-galactopyranoside, which is converted to redox active p-aminophenol, which, in turn, is detected via cyclic voltammetry or chronocoulometry. We show a greater than fourfold improvement enabled by lacY coexpression in cells engineered to respond to bacterial signal molecules, pyocyanin and quorum-sensing autoinducer-2.


Assuntos
Proteínas de Escherichia coli , Simportadores , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras , beta-Galactosidase/metabolismo , Galactose , Proteínas de Transporte de Monossacarídeos
13.
EMBO J ; 41(18): e112162, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35971916

RESUMO

Autoinducer-2 is a key molecule for bacterial quorum sensing. New exporter structures may now help narrow the gap between biology and engineering.


Assuntos
Bactérias , Percepção de Quorum , Proteínas de Bactérias/química , Comunicação
14.
Biotechnol Prog ; 38(6): e3297, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35976745

RESUMO

ß-galactosidase (ß-gal) is one of the most prevalent markers of gene expression. Its activity can be monitored via optical and fluorescence microscopy, electrochemistry, and many other ways after slight modification using protein engineering. Here, we have constructed a chimeric version that incorporates a streptococcal protein G domain at the N-terminus of ß-gal that binds immunoglobins, namely IgG. This protein G: ß-galactosidase fusion enables ß-gal-based spectrophotometric and electrochemical measurements of IgG. Moreover, our results show linearity over an industrially relevant range. We demonstrate applicability with rapid spectroelectrochemical detection of IgG in several formats including using an electrochemical sensing interface that is rapidly assembled directly onto electrodes for incorporation into biohybrid devices. The fusion protein enables sensitive, linear, and rapid responses, and in our case, makes IgG measurements quite robust and simple, expanding the molecular diagnostics toolkit for biological measurement.


Assuntos
Imunoglobulina G , Engenharia de Proteínas , beta-Galactosidase/química , Imunoglobulina G/genética
15.
iScience ; 25(7): 104548, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35747390

RESUMO

Recent observations that abiotic materials can engage in redox-based interactive communication motivates the search for new redox-active materials. Here we fabricated a hydrogel from a four-armed thiolated polyethylene glycol (PEG-SH) and the bacterial metabolite, pyocyanin (PYO). We show that: (i) the PYO-PEG hydrogel is reversibly redox-active; (ii) the molecular-switching and directed electron flow within this PYO-PEG hydrogel requires both a thermodynamic driving force (i.e., potential difference) and diffusible electron carriers that serve as nodes in a redox network; (iii) this redox-switching and electron flow is controlled by the redox network's topology; and (iv) the ability of the PYO-PEG hydrogel to "transmit" electrons to a second insoluble redox-active material (i.e., a catechol-PEG hydrogel) is context-dependent (i.e., dependent on thermodynamic driving forces and appropriate redox shuttles). These studies provide an experimental demonstration of important features of redox-communication and also suggest technological opportunities for the fabrication of interactive materials.

16.
ACS Synth Biol ; 11(2): 877-887, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35113532

RESUMO

There are many strategies to actuate and control genetic circuits, including providing stimuli like exogenous chemical inducers, light, magnetic fields, and even applied voltage, that are orthogonal to metabolic activity. Their use enables actuation of gene expression for the production of small molecules and proteins in many contexts. Additionally, there are a growing number of reports wherein cocultures, consortia, or even complex microbiomes are employed for the production of biologics, taking advantage of an expanded array of biological function. Combining stimuli-responsive engineered cell populations enhances design space but increases complexity. In this work, we co-opt nature's redox networks and electrogenetically route control signals into a consortium of microbial cells engineered to produce a model small molecule, tyrosine. In particular, we show how electronically programmed short-lived signals (i.e., hydrogen peroxide) can be transformed by one population and propagated into sustained longer-distance signals that, in turn, guide tyrosine production in a second population building on bacterial quorum sensing that coordinates their collective behavior. Two design methodologies are demonstrated. First, we use electrogenetics to transform redox signals into the quorum sensing autoinducer, AI-1, that, in turn, induces a tyrosine biosynthesis pathway transformed into a second population. Second, we use the electrogenetically stimulated AI-1 to actuate expression of ptsH, boosting the growth rate of tyrosine-producing cells, augmenting both their number and metabolic activity. In both cases, we show how signal propagation within the coculture helps to ensure tyrosine production. We suggest that this work lays a foundation for employing electrochemical stimuli and engineered cocultures for production of molecular products in biomanufacturing environments.


Assuntos
Percepção de Quorum , Tirosina , Bactérias/metabolismo , Técnicas de Cocultura , Oxirredução , Tirosina/metabolismo
17.
Sci Adv ; 8(5): eabl7506, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35108048

RESUMO

Collagen is a biological building block that is hierarchically assembled into diverse morphological structures that, in some cases, is dynamically adaptive in response to external cues and in other cases forms static terminal structures. Technically, there is limited capabilities to guide the emergence of collagen's hierarchical organization to recapitulate the richness of biological structure and function. Here, we report an electro-assembly pathway to create a dynamically adaptive intermediate molten fibril state for collagen. Structurally, this intermediate state is composed of partially aligned and reversibly associating fibrils with limited hierarchical structure. These molten fibrils can be reversibly reconfigured to offer dynamic properties such as stimuli-stiffening, stimuli-contracting, self-healing, and self-shaping. Also, molten fibrils can be guided to further assemble to recapitulate the characteristic hierarchical structural features of native collagen (e.g., aligned fibers with D-banding). We envision that the electro-assembly of collagen fibrils will provide previously unidentified opportunities for tailored collagen-based biomedical materials.

18.
Microb Cell Fact ; 20(1): 215, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819093

RESUMO

BACKGROUND: Microbial co-cultures and consortia are of interest in cell-based molecular production and even as "smart" therapeutics in that one can take advantage of division of labor and specialization to expand both the range of available functions and mechanisms for control. The development of tools that enable coordination and modulation of consortia will be crucial for future application of multi-population cultures. In particular, these systems would benefit from an expanded toolset that enables orthogonal inter-strain communication. RESULTS: We created a co-culture for the synthesis of a redox-active phenazine signaling molecule, pyocyanin (PYO), by dividing its synthesis into the generation of its intermediate, phenazine carboxylic acid (PCA) from the first strain, followed by consumption of PCA and generation of PYO in a second strain. Interestingly, both PCA and PYO can be used to actuate gene expression in cells engineered with the soxRS oxidative stress regulon, although importantly this signaling activity was found to depend on growth media. That is, like other signaling motifs in bacterial systems, the signaling activity is context dependent. We then used this co-culture's phenazine signals in a tri-culture to modulate gene expression and production of three model products: quorum sensing molecule autoinducer-1 and two fluorescent marker proteins, eGFP and DsRed. We also showed how these redox-based signals could be intermingled with other quorum-sensing (QS) signals which are more commonly used in synthetic biology, to control complex behaviors. To provide control over product synthesis in the tri-cultures, we also showed how a QS-induced growth control module could guide metabolic flux in one population and at the same time guide overall tri-culture function. Specifically, we showed that phenazine signal recognition, enabled through the oxidative stress response regulon soxRS, was dependent on media composition such that signal propagation within our parsed synthetic system could guide different desired outcomes based on the prevailing environment. In doing so, we expanded the range of signaling molecules available for coordination and the modes by which they can be utilized to influence overall function of a multi-population culture. CONCLUSIONS: Our results show that redox-based signaling can be intermingled with other quorum sensing signaling in ways that enable user-defined control of microbial consortia yielding various outcomes defined by culture medium. Further, we demonstrated the utility of our previously designed growth control module in influencing signal propagation and metabolic activity is unimpeded by orthogonal redox-based signaling. By exploring novel multi-modal strategies for guiding communication and consortia outcome, the concepts introduced here may prove to be useful for coordination of multiple populations within complex microbial systems.


Assuntos
Engenharia Metabólica/métodos , Consórcios Microbianos/fisiologia , Fenazinas/metabolismo , Piocianina/biossíntese , Biologia Sintética/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Consórcios Microbianos/genética , Oxirredução , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Transdução de Sinais
19.
Redox Biol ; 47: 102138, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34555595

RESUMO

Growing evidence implicates an association between psychosocial stress and oxidative stress (OxSt) although there are not yet reliable biomarkers to study this association. We used a Trier Social Stress Test (TSST) and compared the response of a healthy control group (HC; N=10) against the response of a schizophrenia group (SCZ; N=10) that is expected to have higher levels of OxSt. Because our previous study showed inconsistent changes in conventional molecular markers for stress responses in the neuroendocrine and immune systems, we analyzed the same serum samples using a separate reducing capacity assay that provides a more global measurement of OxSt. This assay uses the moderately strong oxidizing agent iridium (Ir) to probe a sample's reducing capacity. Specifically, we characterized OxSt by this Ir-reducing capacity assay (Ir-RCA) using two measurement modalities (optical and electrochemical) and we tuned this assay by imposing an input voltage sequence that generates multiple output metrics for data-driven analysis. We defined five OxSt metrics (one optical and four electrochemical metrics) and showed: (i) internal consistency among each metric in the measurements of all 40 samples (baseline and post TSST for N=20); (ii) all five metrics were consistent with expectations of higher levels of OxSt for the SCZ group (three individual metrics showed statistically significant differences); and (iii) all five metrics showed higher levels of OxSt Post-TSST (one metric showed statistically significant difference). Using multivariant analysis, we showed that combinations of OxSt metrics could discern statistically significant increases in OxSt for both the SCZ and HC groups 90 min after the imposed acute psychosocial stress.


Assuntos
Estresse Oxidativo , Esquizofrenia , Bioensaio , Biomarcadores , Humanos , Hidrocortisona , Estresse Psicológico
20.
Curr Opin Biotechnol ; 71: 137-144, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34364305

RESUMO

Biology and electronics are both expert at receiving, analyzing, and responding to information, yet they use entirely different information processing paradigms. Biology processes information using networks that are intrinsically molecular while electronics process information through circuits that control the flow of electrons. There is great interest in coupling the molecular logic of biology with the electronic logic of technology, and we suggest that redox (reduction-oxidation) is a uniquely suited modality for interfacing biology with electronics. Specifically, redox is a native biological modality and is accessible to electronics through electrodes. We summarize recent advances in mediated electrochemistry to direct information transfer into biological systems intentionally altering function, exposing it for more advanced interpretation, which can dramatically expand the biotechnological toolbox.


Assuntos
Eletrônica , Elétrons , Eletroquímica , Eletrodos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...