Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38998270

RESUMO

Composite phosphor ceramics for warm white LED lighting were fabricated with K2SiF6:Mn4+ (KSF) as both a narrowband red phosphor and a translucent matrix in which yellow-emitting Y3Al5O12:Ce3+ (YAG) particles were dispersed. The emission spectra of these composites under blue LED excitation were studied as a function of YAG loading and thickness. Warm white light with a color temperature of 2716 K, a high CRI of 92.6, and an R9 of 77.6 was achieved. A modest improvement in the thermal conductivity of the KSF ceramic of up to 9% was observed with the addition of YAG particles. In addition, a simple model was developed for predicting the emission spectra based on several parameters of the composite ceramics and validated with the experimental results. The emission spectrum can be tuned by varying the dopant concentrations, thickness, YAG loading, and YAG particle size. This work demonstrates the utility of KSF/YAG composite phosphor ceramics as a means of producing warm white light, which are potentially suitable for higher-drive applications due to their increased thermal conductivity and reduced droop compared with silicone-dispersed phosphor powders.

2.
Opt Lett ; 46(10): 2433-2436, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33988602

RESUMO

A new, to the best of our knowledge, 3D additive manufacturing technique utilizing particle-loaded ink jet printing to fabricate transparent ceramic Yb:YAG planar waveguides for laser gain media was demonstrated. Rheological optimization of YAG particle-loaded inks resulted in successful droplet formation and printing resolution. Planar waveguides composed of a Yb:YAG guide encased in undoped YAG cladding were printed with guide thicknesses ranging between 25 and 350 µm and consolidated to high optical quality via solid-state sintering. Sufficiently low optical (1-3%/cm) and intermodal scatter allowed single-mode propagation with a core/clad index difference of $\Delta {n}\sim{5.0} \times {{10}^{- 4}}$ (corresponding to 3 at.% Yb). The waveguides were cladding-pumped longitudinally with a 940 nm diode array resulting in 23.6% slope efficiency in 2 ms pulsed operation.

3.
Phys Med Biol ; 57(14): 4545-54, 2012 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-22722678

RESUMO

Detection of x-rays and gamma rays with high spatial resolution can be achieved with scintillators that are optically coupled to electron-multiplying charge-coupled devices (EMCCDs). These can be operated at typical frame rates of 50 Hz with low noise. In such a set-up, scintillation light within each frame is integrated after which the frame is analyzed for the presence of scintillation events. This method allows for the use of scintillator materials with relatively long decay times of a few milliseconds, not previously considered for use in photon-counting gamma cameras, opening up an unexplored range of dense scintillators. In this paper, we test CdWO4 and transparent polycrystalline ceramics of Lu2O3:Eu and (Gd,Lu)2O3:Eu as alternatives to currently used CsI:Tl in order to improve the performance of EMCCD-based gamma cameras. The tested scintillators were selected for their significantly larger cross-sections at 140 keV ((99m)Tc) compared to CsI:Tl combined with moderate to good light yield. A performance comparison based on gamma camera spatial and energy resolution was done with all tested scintillators having equal (66%) interaction probability at 140 keV. CdWO4, Lu2O3:Eu and (Gd,Lu)2O3:Eu all result in a significantly improved spatial resolution over CsI:Tl, albeit at the cost of reduced energy resolution. Lu2O3:Eu transparent ceramic gives the best spatial resolution: 65 µm full-width-at-half-maximum (FWHM) compared to 147 µm FWHM for CsI:Tl. In conclusion, these 'slow' dense scintillators open up new possibilities for improving the spatial resolution of EMCCD-based scintillation cameras.


Assuntos
Diagnóstico por Imagem/instrumentação , Equipamentos e Provisões Elétricas , Raios gama , Contagem de Cintilação/instrumentação , Câmaras gama , Fótons , Probabilidade , Compostos Radiofarmacêuticos
4.
Opt Lett ; 30(7): 729-31, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15832920

RESUMO

For the first time to the authors' knowledge, laser activity has been achieved in low-phonon-energy, moisture-resistant bromide host crystals, neodymium-doped potassium lead bromide (Nd3+:KPb2Br5) and rubidium lead bromide (Nd3+:RbPb2Br5; RPB). Laser activity at 1.07 microm was observed for both crystalline materials. Laser operation at the new wavelengths 1.18 and 0.97 microm that resulted from the 4F5/2 + 2H9/2 - 4IJ transitions (J=13/2 and J=11/2) in Nd:RPB was achieved in a solid-state laser material. Rare-earth-doped MPb2Br5 (M=K, Rb) is a promising candidate for long-wavelength infrared applications because of its low phonon frequencies and other favorable features. In principle, Nd3+:MPb2Br5 has high potential for laser operation at new wavelengths as well as for the achievement of short-wavelength lasing as a result of upconversion.

5.
Opt Lett ; 28(23): 2336-8, 2003 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-14680174

RESUMO

Population inversion of the 2P 1/2 and 2S 1/2 levels and continuous-wave, three-level laser oscillation at 795 nm on the D1 transition of the rubidium atom has been demonstrated. Using a titanium sapphire laser as a pump source, we obtained a slope power efficiency of 54% relative to absorbed pump power, consistent with homogeneous broadening of the rubidium pump and laser transitions. The end-pumped rubidium laser performance was well described by use of literature spectroscopic and kinetic data in a model that takes into account ground-level depletion and a pump spectral bandwidth that is substantially larger than the collisionally broadened pump transition spectral width.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...