Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 21(12): 2127-2138, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35982381

RESUMO

TiO2 particles of high photocatalytic activity immobilised on various substrates usually suffer from low mechanical stability. This can be overcome by the utilisation of an inorganic binder and/or incorporation in a robust hydrophobic matrix based on rare-earth metal oxides (REOs). Furthermore, intrinsic hydrophobicity of REOs may result in an increased affinity of TiO2-REOs composites to non-polar aqueous pollutants. Therefore, in the present work, three methods were used for the fabrication of composite TiO2/CeO2 films for photocatalytic removal of dye Acid Orange 7 and the herbicide monuron, as representing polar and non-polar pollutants, respectively. In the first method, the composition of a paste containing photoactive TiO2 particles and CeCl3 or Ce(NO3)3 as CeO2 precursors was optimised. This paste was deposited on glass by doctor blading. The second method consisted of the deposition of thin layers of CeO2 by spray coating over a particulate TiO2 photocatalyst layer (prepared by drop casting or electrophoresis). Both approaches lead to composite films of similar photoactivity that of the pure TiO2 layer, nevertheless films made by the first approach revealed better mechanical stability. The third method comprised of modifying a particulate TiO2 film by an overlayer based on colloidal SiO2 and tetraethoxysilane serving as binders, TiO2 particles and cerium oxide precursors at varying concentrations. It was found that such an overlayer significantly improved the mechanical properties of the resulting coating. The use of cerium acetylacetonate as a CeO2 precursor showed only a small increase in photocatalytic activity. On the other hand, deposition of SiO2/TiO2 dispersions containing CeO2 nanoparticles resulted in significant improvement in the rate of photocatalytic removal of the herbicide monuron.


Assuntos
Dióxido de Silício , Poluentes da Água
2.
ACS Appl Mater Interfaces ; 13(33): 39781-39790, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34378379

RESUMO

Despite the increasing demand for enantiopure drugs in the pharmaceutical industry, currently available chiral separation technologies are still lagging behind, whether due to throughput or to operability considerations. This paper presents a new kinetic resolution method, based on the specific adsorption of a target enantiomer onto a molecularly imprinted surface of a photocatalyst and its subsequent degradation through a photocatalytic mechanism. The current model system is composed of an active TiO2 layer, on which the target enantiomer is adsorbed. A photocatalytic suppression layer of Al2O3 is then grown around the adsorbed target molecules by atomic layer deposition. Following the removal of the templating molecules, molecularly imprinted cavities that correspond to the adsorbed species are formed. The stereospecific nature of these pores encourages enantioselective degradation of the undesired species through its enhanced adsorption on the photocatalyst surface, while dampening nonselective photocatalytic activity around the imprinted sites. The method, demonstrated with the dipeptide leucylglycine as a model system, revealed a selectivity factor of up to 7 and an enrichment of a single enantiomer to 85% from an initially racemic mixture. The wide range of parameters that can be optimized (photocatalyst, concentration of imprinted sites, type of passivating layer, etc.) points to the great potential of this method for obtaining enantiomerically pure compounds, beginning from racemic mixtures.

3.
J Phys Condens Matter ; 31(50): 503004, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31469092

RESUMO

Over the years, a considerable amount of attention has been given to the thermodynamics of photocatalysts, i.e. to the location of their valence and conduction bands on the energy scale. The kinetics of the photoinduced charge carriers at short times (i.e. prior to their surface redox reactions) is no less important. While significant work on the transient electronic spectra of photocatalysts has been performed, the transient vibrational spectra of this class of materials was hardly studied. This manuscript aims to increase the scientific awareness to the potential of transient IR spectroscopy (TRIR) as a complementary tool for understanding the first, crucial, steps of photocatalytic processes in solid photocatalysts. This was done herein first by describing the various techniques currently in use for measuring transient IR signals of photo-excited systems and discussing their pros and cons. Then, a variety of examples is given, representing different types of photocatalysts such as oxides (TiO2, NaTaO3, BiOCl, BiVO4), photosensitized oxides (dye-sensitized TiO2), organic polymers (graphitic carbon nitride) and organo-metalic photocatalysts (rhenium bipyridyl complexes). These examples span from materials with no IR fingerprint signals (TiO2) to materials having a distinct spectrum showing well-defined, localized, relatively narrow, vibrational bands (carbon nitride). In choosing the given-above examples, care was made to represent the several pump & probe techniques that are applied when studying transient IR spectroscopy, namely dispersive, transient 2D-IR spectroscopy and step-scan IR spectroscopy. It is hoped that this short review will contribute to expanding the use of TRIR as a viable and important technique among the arsenal of tools struggling to solve the mysteries behind photocatalysis.

4.
RSC Adv ; 8(4): 2161-2172, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35542570

RESUMO

Direct bonding may provide a cheap and reliable alternative to the use of adhesives. While direct bonding of two silicon surfaces is well documented, not much is known about direct bonding between silicon nitride and glass. This is unfortunate since silicon nitride is extensively used as an anti-reflection coating in the PV industry, often in contact with a shielding layer made of glass. A series of bonding experiments between glass and SiN was performed. The highest bonding quality, manifested by the highest bonding energy and lowest void area, was obtained with pairs that had been activated by nitrogen plasma followed by post-contact thermal annealing at 400 °C. HRTEM imaging, HRTEM-EDS and EELS measurements performed on the thin films prepared from bonded samples by Focused Ion Beam (FIB) revealed a clear defect-free interface between the silicon nitride and the glass, 4 nm in thickness. ATR FT-IR measurements performed on activated surfaces prior to contact indicated the formation of silanol groups on the activated glass surface and a thin oxide layer on the silicon nitride. An increase in the bearing ratio of the glass following activation was noticed by AFM. A mechanism for bonding silicon nitride and glass is suggested, based on generation of silanol groups on the glass surface and on oxidation of the silicon nitride surface. The results point out the importance of exposure to air, following activation and prior to bringing the two surfaces into contact.

5.
Phys Chem Chem Phys ; 18(34): 24134, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27509005

RESUMO

Correction for 'Enhanced photocatalytic activity of a self-stabilized synthetic flavin anchored on a TiO2 surface' by Manjula Pandiri et al., Phys. Chem. Chem. Phys., 2016, 18, 18575-18583.

6.
Chemistry ; 22(27): 9209-17, 2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-27243969

RESUMO

This study establishes structure-property relationships for four synthetic flavin molecules as bioinspired redox mediators in electro- and photocatalysis applications. The studied flavin compounds were disubstituted with polar substituents at the N1 and N3 positions (alloxazine) or at the N3 and N10 positions (isoalloxazines). The electrochemical behavior of one such synthetic flavin analogue was examined in detail in aqueous solutions of varying pH in the range from 1 to 10. Cyclic voltammetry, used in conjunction with hydrodynamic (rotating disk electrode) voltammetry, showed quasi-reversible behavior consistent with freely diffusing molecules and an overall global 2e(-) , 2H(+) proton-coupled electron transfer scheme. UV/Vis spectroelectrochemical data was also employed to study the pH-dependent electrochemical behavior of this derivative. Substituent effects on the redox behavior were compared and contrasted for all the four compounds, and visualized within a scatter plot framework to afford comparison with prior knowledge on mostly natural flavins in aqueous media. Finally, a preliminary assessment of one of the synthetic flavins was performed of its electrocatalytic activity toward dioxygen reduction as a prelude to further (quantitative) studies of both freely diffusing and tethered molecules on various electrode surfaces.


Assuntos
Flavinas/química , Catálise , Técnicas Eletroquímicas , Eletrodos , Transporte de Elétrons , Flavinas/síntese química , Hidrodinâmica , Concentração de Íons de Hidrogênio , Oxirredução , Oxigênio/química , Espectrofotometria Ultravioleta , Relação Estrutura-Atividade
7.
Phys Chem Chem Phys ; 18(27): 18575-83, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27346787

RESUMO

Synthetic flavin molecules were anchored on Degussa P25 titanium dioxide (TiO2). The effect of their presence on the photocatalytic (PC) activity of TiO2 was studied. Under UV light, an increase in the degradation rate of ethanol was observed. This increase was accompanied by stabilization of the anchored flavin against self-degradation. The unprecedented stabilization effect was found also in the absence of a reducing agent such as ethanol. In contrast, under the less energetic visible light, fast degradation of the anchored flavin was observed. These rather surprising observations were attributed to the propensity for charge transport from excited flavin molecules to the semiconductor and to the role that such charge transfer may play in stabilizing the overall assembly. Anchored flavins excited by UV light to their S2, S3 electronic states were able to transfer the excited electrons to the TiO2 phase whereas anchored flavin molecules that were excited by visible light to the S1 state were less likely to transfer the photo-excited electrons and therefore were destabilized. These findings may be relevant not only to anchored flavins in general but to other functionalized photocatalysts, and may open up new vistas in the implementation of sensitizers in PC systems.

8.
Materials (Basel) ; 9(10)2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28773922

RESUMO

In order to develop original and efficient visible light response photocatalysts for degrading organic pollutants in wastewater, new photocatalysts Bi2GaSbO7 and Bi2InSbO7 were firstly synthesized by a solid-state reaction method and their chemical, physical and structural properties were characterized. Bi2GaSbO7 and Bi2InSbO7 were crystallized with a pyrochlore-type structure and the lattice parameter of Bi2GaSbO7 or Bi2InSbO7 was 10.356497 Å or 10.666031 Å. The band gap of Bi2GaSbO7 or Bi2InSbO7 was estimated to be 2.59 eV or 2.54 eV. Compared with nitrogen doped TiO2, Bi2GaSbO7 and Bi2InSbO7, both showed excellent photocatalytic activities for degrading methylene blue during visible light irradiation due to their narrower band gaps and higher crystallization perfection. Bi2GaSbO7 showed higher catalytic activity compared with Bi2InSbO7. The photocatalytic degradation of methylene blue followed by the first-order reaction kinetics and the first-order rate constant was 0.01470 min-1, 0.00967 min-1 or 0.00259 min-1 with Bi2GaSbO7, Bi2InSbO7 or nitrogen doped TiO2 as a catalyst. The evolution of CO2 and the removal of total organic carbon were successfully measured and these results indicated continuous mineralization of methylene blue during the photocatalytic process. The possible degradation scheme and pathway of methylene blue was also analyzed. Bi2GaSbO7 and Bi2InSbO7 photocatalysts both had great potential to purify textile industry wastewater.

9.
Adv Mater ; 27(35): 5102-12, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26223962

RESUMO

The conclusions reached by a diverse group of scientists who attended an intense 2-day workshop on hybrid organic-inorganic perovskites are presented, including their thoughts on the most burning fundamental and practical questions regarding this unique class of materials, and their suggestions on various approaches to resolve these issues.

10.
Molecules ; 20(1): 88-110, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25546623

RESUMO

This brief review aims at analyzing the use of dyestuffs for evaluating the photocatalytic properties of novel photocatalysts. It is shown that the use of dyes as predictors for photocatalytic activity has its roots in the pre visible-light activity era, when the aim was to treat effluents streams containing hazardous dyes. The main conclusion of this review is that, in general, dyes are inappropriate as model compounds for the evaluation of photocatalytic activity of novel photocatalysts claimed to operate under visible light. Their main advantage, the ability to use UV-Vis spectroscopy, is severely limited by a variety of factors, most of which are related to the presence of other species. The presence of a second mechanism, sensitization, diminishes the generality required from a model contaminant used for testing a novel photocatalyst. While it is recommended not to use dyes for general testing of novel photocatalysts, it is still understandable that a model system consisting of a dye and a semiconductor can be of large importance if the degradation of a specific dye is the main aim of the research, or, alternatively, if the abilities of a specific dye to induce the degradation of a different type of contaminant are under study.


Assuntos
Corantes/química , Catálise , Processos Fotoquímicos , Espectrofotometria Ultravioleta
11.
Chemphyschem ; 14(10): 2059-70, 2013 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-23754793

RESUMO

The last four decades have shown a remarkable increase in scientific interest in photocatalysis as a tool for tackling the world's energy and waste problems. The apparent similarity between photocatalytic water splitting and photocatalytic degradation of pollutants, which have been studied so far by two different scientific communities, raises the question regarding the extent to which one may utilize knowledge obtained in one field for the benefit of the other. This review examines the common features and differences between the two areas. The main similarities stem from the common dependence on the absorption of photons and on subsequent charge-carrier dynamics. The main dissimilarities are linked to thermodynamics, the type of reactants and end products, and to the role of adsorption and desorption. At present the fundamental differences between storing energy and using it to solve environmental issues affect practical solutions. Yet, easy transfer of knowledge, research resources, and personnel between the two is not only possible but should be encouraged.


Assuntos
Poluentes da Água/química , Água/química , Catálise , Processos Fotoquímicos
12.
Phys Chem Chem Phys ; 14(10): 3392-9, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22298253

RESUMO

A study on the photocatalytic degradation of contaminants (salicylic acid and stearic acid) on titanium dioxide films overcoated with a few monolayers of silica is presented herein. A rather uncommon situation was observed, where the presence of the thin silica layers decreased the degradation rate of stearic acid while increasing that of salicylic acid. The results were explained by addressing the effect in the presence of silica films on the desorption of the intermediate products formed in the degradation of salicylic acid. This finding, which may apply also to other aromatic compounds, may have implications on the design and operation of photocatalytic devices for indoor applications, since ultrathin layers of silica are known to be formed over time on the photocatalyst. An interesting effect of the thickness of the silica sub-nanometre layer on the degradation rate of salicylic acid was explained in terms of gradual changes in the isoelectric point. If optimized, this effect can be utilized to precisely control adsorption or desorption and accordingly to induce specificity in the photocatalytic degradation of contaminants. A methodology for preparing a molecularly imprinting photocatalyst with an inert ultrathin layer in between the imprinted sites was presented. It was found that overcoating the area in between the imprinted sites preserved the benevolent effect of imprinting. While at present the imprinting effect was moderate, there is a reason to believe that this effect can be improved considerably by controlling the type of inert overlayer.


Assuntos
Membranas Artificiais , Ácido Salicílico/química , Dióxido de Silício/química , Ácidos Esteáricos/química , Titânio/química , Catálise , Processos Fotoquímicos
13.
Beilstein J Nanotechnol ; 2: 845-61, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22259769

RESUMO

The ability to control the properties of self-assembled monolayers (SAMs) attached to solid surfaces and the rare photocatalytic properties of titanium dioxide provide a rationale for the study of systems comprising both. Such systems can be realized in the form of SAMs grown on TiO(2) or, in a complementary manner, as TiO(2) grown on SAMs. Accordingly, the current status of knowledge regarding SAMs on TiO(2) is described. Photocatalytic phenomena that are of specific relevance to SAMs, such as remote degradation, and cases where SAMs were used to study photocatalytic phenomena, are discussed as well. Mastering of micro-patterning is a key issue en route to a successful assimilation of a variety of titanium dioxide based devices. Accordingly, particular attention is given to the description of a variety of methods and techniques aimed at utilizing the photocatalytic properties of titanium dioxide for patterning. Reports on a variety of applications are discussed. These examples, representing the areas of photovoltaics, microelectronics, microelectromechanics, photocatalysis, corrosion prevention and even biomedicine should be regarded as appetizers paving the way for further studies to be performed.

14.
Phys Chem Chem Phys ; 11(29): 6289-98, 2009 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-19606342

RESUMO

Bi(2)SbVO(7) was prepared by solid-state reaction technique for the first time and the structural and photocatalytic properties of Bi(2)SbVO(7) and Bi(2)GaTaO(7) were investigated. The results showed that Bi(2)SbVO(7) crystallized with the tetragonal crystal system by space group I4/mmm. In addition, the band gaps of Bi(2)SbVO(7) and Bi(2)GaTaO(7) were estimated to be 2.33 and 2.52 eV. The photocatalytic degradation of aqueous methylene blue (MB) dye over Bi(2)SbVO(7) and Bi(2)GaTaO(7) was investigated under visible light irradiation. Bi(2)SbVO(7) showed higher catalytic activity compared with Bi(2)GaTaO(7) for MB photocatalytic degradation under visible light irradiation. The photocatalytic MB degradation followed first-order reaction kinetics, the apparent first-order rate constant k being 0.0262 and 0.0060 min(-1) with Bi(2)SbVO(7) and Bi(2)GaTaO(7), respectively. Complete removal of aqueous MB was realized after visible light irradiation for 210 min with Bi(2)SbVO(7) as a catalyst. The reduction of the total organic carbon (TOC), the formation of inorganic products (SO(4)(2-) and NO(3)(-)) and the evolution of CO(2) revealed complete removal of aqueous MB during the photocatalytic process by this novel photocatalyst.

15.
Langmuir ; 21(12): 5600-4, 2005 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-15924496

RESUMO

Composite nanofibers containing nanometric TiO2 particles and multiwalled carbon nanotubes dispersed in poly(acrylonitrile) (PAN) were prepared by the electrospinning technique. The structure and quality of the precursor dispersions were evaluated by cryo-transmission electron microscopy. The fabricated nanofibers, the diameters of which were in the 20-200 nm range, contained well-oriented nanotubes and spherical TiO2 nanoparticles in close proximity. Such nanofibers are under investigation as new photocatalytic reactor elements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...