Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(6)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801054

RESUMO

UAVs often perform tasks that require flying close to walls or structures and in environments where a satellite-based location is not possible. Flying close to solid bodies implies a higher risk of collisions, thus requiring an increase in the precision of the measurement and control of the UAV's position. The aerodynamic distortions generated by nearby walls or other objects are also relevant, making the control more complex and further placing demands on the positioning system. Performing wall-related tasks implies flying very close to the wall and, in some cases, even touching it. This work presents a Near-Wall Positioning System (NWPS) based on the combination of an Ultra-wideband (UWB) solution and LIDAR-based range finders. This NWPS has been developed and tested to allow precise positioning and orientation of a multirotor UAV relative to a wall when performing tasks near it. Specific position and orientation control hardware based on horizontal thrusters has also been designed, allowing the UAV to move smoothly and safely near walls.

2.
Sensors (Basel) ; 16(7)2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27399711

RESUMO

This paper addresses the problem of developing user interfaces for Ubiquitous Computing (UC) and Ambient Intelligence (AmI) systems. These kind of systems are expected to provide a natural user experience, considering interaction modalities adapted to the user abilities and preferences and using whatever interaction devices are present in the environment. These interaction devices are not necessarily known at design time. The task is quite complicated due to the variety of devices and technologies, and the diversity of scenarios, and it usually burdens the developer with the need to create many different UIs in order to consider the foreseeable user-environment combinations. Here, we propose an UI abstraction framework for UC and AmI systems that effectively improves the portability of those systems between different environments and for different users. It allows developers to design and implement a single UI capable of being deployed with different devices and modalities regardless the physical location.

3.
Sensors (Basel) ; 11(10): 9361-92, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163700

RESUMO

Human interaction environments (HIE) must be understood as any place where people carry out their daily life, including their work, family life, leisure and social life, interacting with technology to enhance or facilitate the experience. The integration of technology in these environments has been achieved in a disorderly and incompatible way, with devices operating in isolated islands with artificial edges delimited by the manufacturers. In this paper we are presenting the UniDA framework, an integral solution for the development of systems that require the integration and interoperation of devices and technologies in HIEs. It provides developers and installers with a uniform conceptual framework capable of modelling an HIE, together with a set of libraries, tools and devices to build distributed instrumentation networks with support for transparent integration of other technologies. A series of use case examples and a comparison to many of the existing technologies in the field has been included in order to show the benefits of using UniDA.


Assuntos
Meio Ambiente , Relações Interpessoais , Software , Tecnologia/instrumentação , Redes de Comunicação de Computadores , Computadores , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...