Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(7): e17373, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38967106

RESUMO

Climate change is an environmental emergency threatening species and ecosystems globally. Oceans have absorbed about 90% of anthropogenic heat and 20%-30% of the carbon emissions, resulting in ocean warming, acidification, deoxygenation, changes in ocean stratification and nutrient availability, and more severe extreme events. Given predictions of further changes, there is a critical need to understand how marine species will be affected. Here, we used an integrated risk assessment framework to evaluate the vulnerability of 132 chondrichthyans in the Eastern Tropical Pacific (ETP) to the impacts of climate change. Taking a precautionary view, we found that almost a quarter (23%) of the ETP chondrichthyan species evaluated were highly vulnerable to climate change, and much of the rest (76%) were moderately vulnerable. Most of the highly vulnerable species are batoids (77%), and a large proportion (90%) are coastal or pelagic species that use coastal habitats as nurseries. Six species of batoids were highly vulnerable in all three components of the assessment (exposure, sensitivity and adaptive capacity). This assessment indicates that coastal species, particularly those relying on inshore nursery areas are the most vulnerable to climate change. Ocean warming, in combination with acidification and potential deoxygenation, will likely have widespread effects on ETP chondrichthyan species, but coastal species may also contend with changes in freshwater inputs, salinity, and sea level rise. This climate-related vulnerability is compounded by other anthropogenic factors, such as overfishing and habitat degradation already occurring in the region. Mitigating the impacts of climate change on ETP chondrichthyans involves a range of approaches that include addressing habitat degradation, sustainability of exploitation, and species-specific actions may be required for species at higher risk. The assessment also highlighted the need to further understand climate change's impacts on key ETP habitats and processes and identified knowledge gaps on ETP chondrichthyan species.


El cambio climático es una emergencia medioambiental que amenaza a especies y ecosistemas en todo el mundo. Los océanos han absorbido alrededor del 90% del calor antropogénico y entre el 20% y el 30% de las emisiones de carbono, lo que ha provocado su calentamiento, acidificación, desoxigenación, cambios en la estratificación de los océanos y en la disponibilidad de nutrientes, así como fenómenos extremos más pronunciados. Dadas las predicciones de cambios, hay una importante necesidad de entender cómo las especies marinas se verán afectadas. En este estudio utilizamos una Evaluación Integrada de Riesgos para evaluar la vulnerabilidad de 132 condrictios del Pacífico Tropical Oriental (PTO) a los impactos del cambio climático. Adoptando un enfoque preventivo, estimamos que la vulnerabilidad general al cambio climático es Alta para casi una cuarta parte (23%) de las especies de condrictios del PTO evaluadas y Moderada para gran parte del resto (76%). La mayoría de las especies altamente vulnerables son batoideos (77%), y una gran proporción de éstas (90%) son especies costeras o especies pelágicas que utilizan los hábitats costeros como áreas de crianza. Seis especies de batoideos tuvieron una vulnerabilidad Alta en los tres componentes de la evaluación. Esta evaluación indica que las especies costeras, en particular las que dependen de áreas de crianza costeras, son las más vulnerables al cambio climático. Es probable que el calentamiento de los océanos, junto con la acidificación y la posible desoxigenación, tenga efectos generalizados sobre las especies de condrictios del PTO, pero las especies costeras se verán también afectadas por los cambios en los aportes de agua dulce, la salinidad y el aumento del nivel del mar. Esta vulnerabilidad relacionada con el clima se ve agravada por otros factores antropogénicos que ya se están produciendo en la región, como la sobrepesca y la degradación del hábitat. La mitigación de los impactos del cambio climático sobre los condrictios del PTO implica medidas que incluyan abordar la degradación del hábitat y la sostenibilidad de la explotación pesquera, y acciones para las especies de mayor riesgo son necesarias. Esta evaluación también destaca la necesidad de comprender mejor los impactos del cambio climático en los hábitats y procesos clave del PTO y las lagunas de conocimiento identificadas en relación con las especies de condrictios del PTO.


Assuntos
Mudança Climática , Animais , Oceano Pacífico , Medição de Risco , Ecossistema , Peixes/fisiologia
2.
J Cell Sci ; 137(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38738286

RESUMO

Plant protoplasts provide starting material for of inducing pluripotent cell masses that are competent for tissue regeneration in vitro, analogous to animal induced pluripotent stem cells (iPSCs). Dedifferentiation is associated with large-scale chromatin reorganisation and massive transcriptome reprogramming, characterised by stochastic gene expression. How this cellular variability reflects on chromatin organisation in individual cells and what factors influence chromatin transitions during culturing are largely unknown. Here, we used high-throughput imaging and a custom supervised image analysis protocol extracting over 100 chromatin features of cultured protoplasts. The analysis revealed rapid, multiscale dynamics of chromatin patterns with a trajectory that strongly depended on nutrient availability. Decreased abundance in H1 (linker histones) is hallmark of chromatin transitions. We measured a high heterogeneity of chromatin patterns indicating intrinsic entropy as a hallmark of the initial cultures. We further measured an entropy decline over time, and an antagonistic influence by external and intrinsic factors, such as phytohormones and epigenetic modifiers, respectively. Collectively, our study benchmarks an approach to understand the variability and evolution of chromatin patterns underlying plant cell reprogramming in vitro.


Assuntos
Cromatina , Entropia , Células-Tronco Pluripotentes Induzidas , Cromatina/metabolismo , Cromatina/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Protoplastos/metabolismo , Reprogramação Celular/genética , Histonas/metabolismo , Histonas/genética , Células Vegetais/metabolismo , Epigênese Genética
3.
J Fish Biol ; 103(1): 183-188, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37070750

RESUMO

The giant mottled eel (Anguilla marmorata) is distributed mostly in the Indo-West Pacific. However, a few records indicate the presence of this eel in the Tropical Central and East Pacific. In April 2019, an eel specimen was caught in a small stream in San Cristobal Island, Galápagos. Morphological and molecular characters (16S and Cytb mtDNA sequences) confirmed the species as A. marmorata Quoy & Gaimard, 1824. The re-discovery of A. marmorata in Galápagos supports the hypothesis of an eastward range expansion from the west, probably through the North Equatorial Counter-Current.


Assuntos
Anguilla , Animais , Anguilla/genética , Equador , Rios , DNA Mitocondrial/genética
4.
Plant Cell Environ ; 45(2): 572-590, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34800292

RESUMO

The synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) functions as an agronomic weed control herbicide. High concentrations of 2,4-D induce plant growth defects, particularly leaf epinasty and stem curvature. Although the 2,4-D triggered reactive oxygen species (ROS) production, little is known about its signalling. In this study, by using a null mutant in peroxisomal acyl CoA oxidase 1 (acx1-2), we identified acyl-coenzyme A oxidase 1 (ACX1) as one of the main sources of ROS production and, in part, also causing the epinastic phenotype following 2,4-D application. Transcriptomic analyses of wild type (WT) plants after treatment with 2,4-D revealed a ROS-related peroxisomal footprint in early plant responses, while other organelles, such as mitochondria and chloroplasts, are involved in later responses. Interestingly, a group of 2,4-D-responsive ACX1-dependent transcripts previously associated with epinasty is related to auxin biosynthesis, metabolism, and signalling. We found that the auxin receptor auxin signalling F-box 3 (AFB3), a component of Skp, Cullin, F-box containing complex (SCF) (ASK-cullin-F-box) E3 ubiquitin ligase complexes, which mediates auxin/indole acetic acid (AUX/IAA) degradation by the 26S proteasome, acts downstream of ACX1 and is involved in the epinastic phenotype induced by 2,4-D. We also found that protein degradation associated with ubiquitin E3-RING and E3-SCF-FBOX in ACX1-dependent signalling in plant responses to 2,4-D is significantly regulated over longer treatment periods.


Assuntos
Ácido 2,4-Diclorofenoxiacético/efeitos adversos , Arabidopsis/efeitos dos fármacos , Herbicidas/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Arabidopsis/fisiologia
5.
Sci Rep ; 11(1): 14959, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294756

RESUMO

Shark fishing, driven by the fin trade, is the primary cause of global shark population declines. Here, we present a case study that exemplifies how industrial fisheries are likely depleting shark populations in the Eastern Tropical Pacific Ocean. In August 2017, the vessel Fu Yuan Yu Leng 999, of Chinese flag, was detained while crossing through the Galápagos Marine Reserve without authorization. This vessel contained 7639 sharks, representing one of the largest seizures recorded to date. Based on a sample of 929 individuals (12%), we found 12 shark species: 9 considered as Vulnerable or higher risk by the IUCN and 8 listed in CITES. Four species showed a higher proportion of immature than mature individuals, whereas size-distribution hints that at least some of the fishing ships associated with the operation may have been using purse-seine gear fishing equipment, which, for some species, goes against international conventions. Our data expose the magnitude of the threat that fishing industries and illegal trade represent to sharks in the Eastern Tropical Pacific Ocean.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Tubarões/anatomia & histologia , Tubarões/crescimento & desenvolvimento , Animais , Tamanho Corporal , Conservação dos Recursos Naturais , Pesqueiros , Oceano Pacífico , Comportamento Sexual Animal , Tubarões/classificação , Tubarões/genética
6.
Mol Phylogenet Evol ; 136: 119-127, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30981810

RESUMO

With just a handful of documented cases of hybridisation in cartilaginous fishes, shark hybridisation remains poorly investigated. Small amounts of admixture have been detected between Galapagos (Carcharhinus galapagensis) and dusky (Carcharhinus obscurus) sharks previously, generating a hypothesis of ongoing hybridisation. We sampled a large number of individuals from areas where the species co-occur (contact zones) across the Pacific Ocean and used both mitochondrial and nuclear-encoded SNPs to examine genetic admixture and introgression between the two species. Using empirical analytical approaches and simulations, we first developed a set of 1873 highly informative SNPs for these two species to evaluate the degree of admixture between them. Overall, results indicate a high discriminatory power of nuclear SNPs (FST = 0.47, p < 0.05) between the two species, unlike mitochondrial DNA (ΦST = 0.00 p > 0.05), which failed to differentiate these species. We identified four hybrid individuals (∼1%) and detected bi-directional introgression between C. galapagensis and C. obscurus in the Gulf of California along the east Pacific coast of the Americas. We emphasize the importance of including a combination of mtDNA and diagnostic nuclear markers to properly assess species identification, detect patterns of hybridisation, and better inform management and conservation of these sharks, especially given the morphological similarities within the genus Carcharhinus.


Assuntos
Hibridização Genética , Tubarões/genética , Animais , Teorema de Bayes , California , Simulação por Computador , DNA Mitocondrial/genética , Geografia , Mitocôndrias/genética , Oceano Pacífico , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Tamanho da Amostra
7.
PLoS One ; 13(9): e0203169, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30256795

RESUMO

Scinax is a speciose genus of Neotropical hylid frogs. We describe a new species from western Ecuador (elevations between 0 and 1207 m) using morphology, vocalizations, and DNA sequences. We also present a new phylogeny for Scinax based on mitochondrial DNA genes 12S rRNA, Cytochrome Oxidase sub-unit I, Cytochrome B, 16S rRNA, NADH dehydrogenase subunit 1, and adjacent tRNAs. The new species, Scinax tsachila sp. nov. was previously confused with S. quinquefasciatus, a morphologically similar sympatric species. They differ by having markedly different advisement calls, distinct skin texture in the dorsum, and different bone coloration. The new species is sister to S. elaeochroa, a species that differs in advertisement call and color pattern. We provide an updated species account for Scinax quinquefasciatus and a redescription of its holotype.


Assuntos
Anuros/classificação , Distribuição Animal , Animais , Anuros/genética , Anuros/fisiologia , Tamanho Corporal , DNA Mitocondrial/genética , Ecossistema , Equador , Feminino , Especiação Genética , Masculino , Filogenia , Pigmentação , Análise de Sequência de DNA , Especificidade da Espécie , Simpatria/genética , Simpatria/fisiologia , Vocalização Animal
8.
Heredity (Edinb) ; 120(5): 407-421, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29321624

RESUMO

The application of genome-wide cytonuclear molecular data to identify management and adaptive units at various spatio-temporal levels is particularly important for overharvested large predatory organisms, often characterized by smaller, localized populations. Despite being "near threatened", current understanding of habitat use and population structure of Carcharhinus galapagensis is limited to specific areas within its distribution. We evaluated population structure and connectivity across the Pacific Ocean using genome-wide single-nucleotide polymorphisms (~7200 SNPs) and mitochondrial control region sequences (945 bp) for 229 individuals. Neutral SNPs defined at least two genetically discrete geographic groups: an East Tropical Pacific (Mexico, east and west Galapagos Islands), and another central-west Pacific (Lord Howe Island, Middleton Reef, Norfolk Island, Elizabeth Reef, Kermadec, Hawaii and Southern Africa). More fine-grade population structure was suggested using outlier SNPs: west Pacific, Hawaii, Mexico, and Galapagos. Consistently, mtDNA pairwise ΦST defined three regional stocks: east, central and west Pacific. Compared to neutral SNPs (FST = 0.023-0.035), mtDNA exhibited more divergence (ΦST = 0.258-0.539) and high overall genetic diversity (h = 0.794 ± 0.014; π = 0.004 ± 0.000), consistent with the longstanding eastern Pacific barrier between the east and central-west Pacific. Hawaiian and Southern African populations group within the west Pacific cluster. Effective population sizes were moderate/high for east/west populations (738 and 3421, respectively). Insights into the biology, connectivity, genetic diversity, and population demographics informs for improved conservation of this species, by delineating three to four conservation units across their Pacific distribution. Implementing such conservation management may be challenging, but is necessary to achieve long-term population resilience at basin and regional scales.


Assuntos
Variação Genética , Genética Populacional , Tubarões/genética , Animais , Conservação dos Recursos Naturais , DNA Mitocondrial/genética , Equador , Feminino , Genótipo , Masculino , Oceano Pacífico , Filogenia , Polimorfismo de Nucleotídeo Único/genética
9.
Plant Physiol ; 172(4): 2388-2402, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27794100

RESUMO

The accumulation of starch within photosynthetic tissues and within dedicated storage organs has been characterized extensively in many species, and a function in buffering carbon availability or in fueling later growth phases, respectively, has been proposed. However, developmentally regulated starch turnover within heterotrophic tissues other than dedicated storage organs is poorly characterized, and its function is not well understood. Here, we report on the characterization of starch turnover during flower, early embryo, and silique development in Arabidopsis (Arabidopsis thaliana) using a combined clearing-staining technique on whole-mount tissue. Besides the two previously documented waves of transient starch accumulation in the stamen envelope, occurring during meiosis and pollen mitosis I, we identified a novel, third wave of starch amylogenesis/amylolysis during the last stages of stamen development. To gain insights into the underlying molecular mechanisms, we analyzed publicly available microarray data, which revealed a developmentally coordinated expression of carbohydrate transport and metabolism genes during these waves of transient starch accumulation. Based on this analysis, we characterized starch dynamics in mutants affecting hexose phosphate metabolism and translocation, and identified the Glc-6-phosphate/phosphate antiporter GPT1 as the putative translocator of Glc-6-phosphate for starch biosynthesis in reproductive tissues. Based on these results, we propose a model of starch synthesis within the pollen grain and discuss the nutrient transport route feeding the embryo within the developing seed.


Assuntos
Arabidopsis/embriologia , Arabidopsis/metabolismo , Flores/embriologia , Flores/metabolismo , Sementes/embriologia , Amido/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Vias Biossintéticas/genética , Metabolismo dos Carboidratos/genética , Proliferação de Células , Simulação por Computador , Regulação para Baixo/genética , Flores/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Modelos Biológicos , Mutação/genética , Especificidade de Órgãos/genética , Pólen/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sementes/genética , Zigoto/citologia , Zigoto/metabolismo
10.
Plant Cell ; 28(8): 1860-78, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27436713

RESUMO

Starch serves functions that range over a timescale of minutes to years, according to the cell type from which it is derived. In guard cells, starch is rapidly mobilized by the synergistic action of ß-AMYLASE1 (BAM1) and α-AMYLASE3 (AMY3) to promote stomatal opening. In the leaves, starch typically accumulates gradually during the day and is degraded at night by BAM3 to support heterotrophic metabolism. During osmotic stress, starch is degraded in the light by stress-activated BAM1 to release sugar and sugar-derived osmolytes. Here, we report that AMY3 is also involved in stress-induced starch degradation. Recently isolated Arabidopsis thaliana amy3 bam1 double mutants are hypersensitive to osmotic stress, showing impaired root growth. amy3 bam1 plants close their stomata under osmotic stress at similar rates as the wild type but fail to mobilize starch in the leaves. (14)C labeling showed that amy3 bam1 plants have reduced carbon export to the root, affecting osmolyte accumulation and root growth during stress. Using genetic approaches, we further demonstrate that abscisic acid controls the activity of BAM1 and AMY3 in leaves under osmotic stress through the AREB/ABF-SnRK2 kinase-signaling pathway. We propose that differential regulation and isoform subfunctionalization define starch-adaptive plasticity, ensuring an optimal carbon supply for continued growth under an ever-changing environment.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Folhas de Planta/metabolismo , Amido/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Pressão Osmótica/fisiologia , Folhas de Planta/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
11.
Curr Biol ; 26(3): 362-70, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26774787

RESUMO

Stomatal pores form a crucial interface between the leaf mesophyll and the atmosphere, controlling water and carbon balance in plants [1]. Major advances have been made in understanding the regulatory networks and ion fluxes in the guard cells surrounding the stomatal pore [2]. However, our knowledge on the role of carbon metabolism in these cells is still fragmentary [3-5]. In particular, the contribution of starch in stomatal opening remains elusive [6]. Here, we used Arabidopsis thaliana as a model plant to provide the first quantitative analysis of starch turnover in guard cells of intact leaves during the diurnal cycle. Starch is present in guard cells at the end of night, unlike in the rest of the leaf, but is rapidly degraded within 30 min of light. This process is critical for the rapidity of stomatal opening and biomass production. We exploited Arabidopsis molecular genetics to define the mechanism and regulation of guard cell starch metabolism, showing it to be mediated by a previously uncharacterized pathway. This involves the synergistic action of ß-amylase 1 (BAM1) and α-amylase 3 (AMY3)-enzymes that are normally not required for nighttime starch degradation in other leaf tissues. This pathway is under the control of the phototropin-dependent blue-light signaling cascade and correlated with the activity of the plasma membrane H(+)-ATPase. Our results show that guard cell starch degradation has an important role in plant growth by driving stomatal responses to light.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Luz , Estômatos de Plantas/fisiologia , Amido/metabolismo , Folhas de Planta/fisiologia
12.
J Exp Bot ; 67(6): 1819-26, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26792489

RESUMO

During photosynthesis of higher plants, absorbed light energy is converted into chemical energy that, in part, is accumulated in the form of transitory starch within chloroplasts. In the following night, transitory starch is mobilized to sustain the heterotrophic metabolism of the plant. ß-amylases are glucan hydrolases that cleave α-1,4-glycosidic bonds of starch and release maltose units from the non-reducing end of the polysaccharide chain. In Arabidopsis, nocturnal degradation of transitory starch involves mainly ß-amylase-3 (BAM3). A second ß-amylase isoform, ß-amylase-1 (BAM1), is involved in diurnal starch degradation in guard cells, a process that sustains stomata opening. However, BAM1 also contributes to diurnal starch turnover in mesophyll cells under osmotic stress. With the aim of dissecting the role of ß-amylases in osmotic stress responses in Arabidopsis, mutant plants lacking either BAM1 or BAM3 were subject to a mild (150mM mannitol) and prolonged (up to one week) osmotic stress. We show here that leaves of osmotically-stressed bam1 plants accumulated more starch and fewer soluble sugars than both wild-type and bam3 plants during the day. Moreover, bam1 mutants were impaired in proline accumulation and suffered from stronger lipid peroxidation, compared with both wild-type and bam3 plants. Taken together, these data strongly suggest that carbon skeletons deriving from BAM1 diurnal degradation of transitory starch support the biosynthesis of proline required to face the osmotic stress. We propose the transitory-starch/proline interplay as an interesting trait to be tackled by breeding technologies aimingto improve drought tolerance in relevant crops.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Secas , Prolina/biossíntese , Proteínas Serina-Treonina Quinases/metabolismo , Amido/metabolismo , Estresse Fisiológico , Arabidopsis/genética , Luz , Peroxidação de Lipídeos/efeitos da radiação , Pressão Osmótica/efeitos da radiação , Transpiração Vegetal/fisiologia , Transpiração Vegetal/efeitos da radiação , Plantas Geneticamente Modificadas , Polissacarídeos/metabolismo , Regiões Promotoras Genéticas/genética , Solubilidade , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos da radiação
13.
Plant Signal Behav ; 7(3): 425-7, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22476465

RESUMO

Although structurally similar to the natural plant hormone indol-3- acetic acid, auxin herbicides were developed for purposes other than growth, and have been successfully used in agriculture for the last 60 years. Concerted efforts are being made to understand and decipher the precise mechanism of action of IAA and synthetic auxins. Innumerable results need to be interconnected to resolve the puzzle of auxin biology and action mode of auxin herbicides. To date, different breakthroughs are providing more insights into the process of plant-herbicide interactions. Here we highlight some of the latest findings on how the 2,4-dichlorophenoxyacetic acid damages susceptible broadleaf plants, emphasizing the role of ROS as a downstream component of the auxin signal transduction under herbicide treatment.


Assuntos
Ácido 2,4-Diclorofenoxiacético/farmacologia , Herbicidas/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
14.
J Exp Bot ; 63(5): 2089-103, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22213812

RESUMO

Peroxisomes, single-membrane-bounded organelles with essentially oxidative metabolism, are key in plant responses to abiotic and biotic stresses. Recently, the presence of nitric oxide (NO) described in peroxisomes opened the possibility of new cellular functions, as NO regulates diverse biological processes by directly modifying proteins. However, this mechanism has not yet been analysed in peroxisomes. This study assessed the presence of S-nitrosylation in pea-leaf peroxisomes, purified S-nitrosylated peroxisome proteins by immunoprecipitation, and identified the purified proteins by two different mass-spectrometry techniques (matrix-assisted laser desorption/ionization tandem time-of-flight and two-dimensional nano-liquid chromatography coupled to ion-trap tandem mass spectrometry). Six peroxisomal proteins were identified as putative targets of S-nitrosylation involved in photorespiration, ß-oxidation, and reactive oxygen species detoxification. The activity of three of these proteins (catalase, glycolate oxidase, and malate dehydrogenase) is inhibited by NO donors. NO metabolism/S-nitrosylation and peroxisomes were analysed under two different types of abiotic stress, i.e. cadmium and 2,4-dichlorophenoxy acetic acid (2,4-D). Both types of stress reduced NO production in pea plants, and an increase in S-nitrosylation was observed in pea extracts under 2,4-D treatment while no total changes were observed in peroxisomes. However, the S-nitrosylation levels of catalase and glycolate oxidase changed under cadmium and 2,4-D treatments, suggesting that this post-translational modification could be involved in the regulation of H(2)O(2) level under abiotic stress.


Assuntos
Aldeído Oxirredutases/metabolismo , Óxido Nítrico/metabolismo , Peroxissomos/metabolismo , Pisum sativum/fisiologia , Processamento de Proteína Pós-Traducional , Estresse Fisiológico/fisiologia , Ácido 2,4-Diclorofenoxiacético/farmacologia , Oxirredutases do Álcool/metabolismo , Aldeído Oxirredutases/antagonistas & inibidores , Cádmio/farmacologia , Catalase/metabolismo , Malato Desidrogenase/metabolismo , Doadores de Óxido Nítrico/farmacologia , Pisum sativum/enzimologia , Pisum sativum/metabolismo , Peroxissomos/enzimologia , Extratos Vegetais/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Proteômica , Espécies Reativas de Oxigênio/metabolismo , S-Nitrosoglutationa/farmacologia
15.
Plant Cell Environ ; 34(11): 1874-89, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21707656

RESUMO

In this work the differential response of adult and young leaves from pea (Pisum sativum L.) plants to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) (23 mm) applied by foliar spraying was investigated. The concentration of 2,4-D (23 mm) and the time of treatment (72 h) were previously optimized in order to visualize its toxic effects on pea plants. Under these conditions, the herbicide induced severe disturbances in mesophyll cells structure and proliferation of vascular tissue in young leaves and increased acyl-CoA oxidase (ACX), xanthine oxidase (XOD) and lipoxygenase (LOX) activities in young leaves, and only ACX and LOX in adult leaves. This situation produced reactive oxygen species (ROS) over-accumulation favoured by the absence of significant changes in the enzymatic antioxidants, giving rise to oxidative damages to proteins and membrane lipids. An increase of ethylene took place in both young and adult leaves and the induction of genes encoding the stress proteins, PRP4A and HSP 71,2, was observed mainly in young leaves. These results suggest that ROS overproduction is a key factor in the effect of high concentrations of 2,4-D, and ROS can trigger a differential response in young and adult leaves, either epinasty development in young leaves or senescence processes in adult tissues.


Assuntos
Ácido 2,4-Diclorofenoxiacético/toxicidade , Pisum sativum/efeitos dos fármacos , Pisum sativum/crescimento & desenvolvimento , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Biomarcadores/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Pisum sativum/enzimologia , Pisum sativum/ultraestrutura , Fenótipo , Folhas de Planta/enzimologia , Folhas de Planta/ultraestrutura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
Plant Physiol ; 150(1): 229-43, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19279198

RESUMO

Cadmium (Cd) toxicity has been widely studied in different plant species; however, the mechanism involved in its toxicity as well as the cell response against the metal have not been well established. In this work, using pea (Pisum sativum) plants, we studied the effect of Cd on antioxidants, reactive oxygen species (ROS), and nitric oxide (NO) metabolism of leaves using different cellular, molecular, and biochemical approaches. The growth of pea plants with 50 mum CdCl(2) affected differentially the expression of superoxide dismutase (SOD) isozymes at both transcriptional and posttranscriptional levels, giving rise to a SOD activity reduction. The copper/zinc-SOD down-regulation was apparently due to the calcium (Ca) deficiency induced by the heavy metal. In these circumstances, the overproduction of the ROS hydrogen peroxide and superoxide could be observed in vivo by confocal laser microscopy, mainly associated with vascular tissue, epidermis, and mesophyll cells, and the production of superoxide radicals was prevented by exogenous Ca. On the other hand, the NO synthase-dependent NO production was strongly depressed by Cd, and treatment with Ca prevented this effect. Under these conditions, the pathogen-related proteins PrP4A and chitinase and the heat shock protein 71.2, were up-regulated, probably to protect cells against damages induced by Cd. The regulation of these proteins could be mediated by jasmonic acid and ethylene, whose contents increased by Cd treatment. A model is proposed for the cellular response to long-term Cd exposure consisting of cross talk between Ca, ROS, and NO.


Assuntos
Cádmio/toxicidade , Cálcio/metabolismo , Óxido Nítrico/metabolismo , Pisum sativum/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Ciclopentanos/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Modelos Biológicos , Oxilipinas/metabolismo , Pisum sativum/citologia , Pisum sativum/metabolismo , Folhas de Planta/citologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...