Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(39): 25415-25423, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199341

RESUMO

Mixed-cation perovskite materials have shown great potential for sunlight harvesting and have surpassed unmixed perovskite materials in solar cell efficiency and stability. The role of mixed monovalent cations in the enhanced optoelectronic properties and excited state response, however, are still elusive from a theoretical perspective. Herein, through time dependent density functional theory calculations of mixed cation perovskites, we report the electronic structure of Cs formamidinium (FA) mixed cationic lead iodide (Cs0.17FA0.87PbI3) in comparison to the corresponding single monovalent cation hybrid perovskite. The results show that the Cs0.17FA0.87PbI3 and FAPbI3 had negligible differences in the optical band gap, and partial and total density of states in comparison to a single cation perovskite, while the effective mass of carriers, the local atomic density of states, the directional transport, and the structural distortions were significantly different. A lattice-distortion-induced asymmetry in the ground-state charge density is found, and originates from the co-location of caesium atoms in the lattice and signifies the effect on the charge density upon cation mixing and corresponding symmetry breaking. The excited-state charge response and induced polarizabilities are quantified, and discussed in terms of their importance for effective light absorption, charge separation, and final solar cell performance. We also quantify the impact of such polarizabilities on the dynamics of the structure of the perovskites and the implications this has for hot carrier cooling. The results shed light on the mechanism and origin of the enhanced performance in mixed-cation perovskite-based devices and their merits in comparison to single cation perovskites.

2.
Chem Sci ; 13(23): 6766-6781, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35774180

RESUMO

Organic-inorganic hybrid halide perovskite materials have attracted considerable research interest, especially for photovoltaics. In addition, their scope has been extended towards light-emitting devices, photodetectors, or detectors. However, the toxicity of lead (Pb) element in perovskite compositions limits their applications. Therefore, a tremendous research effort on replacing is underway. More specifically, tin-based perovskites have shown the highest potential for this purpose. However, many challenges remain before these materials reach the goals of stability, safety, and eventually commercial application. This perspective considers many aspects and the critical development possibilities of tin-based perovskites, including drawbacks and challenges based on their physical properties. Additionally, it provides insights for future device applications that go beyond solar cells. Finally, the existing challenges and opportunities in tin-based perovskites are discussed.

3.
ACS Omega ; 5(40): 25819-25823, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33073106

RESUMO

Herein, we have investigated the CO2 reduction paths on the (101) anatase TiO2 surface using an approach based on the density functional tight binding (DFTB) theory. We analyzed the reaction paths for the conversion of carbon dioxide to methane by performing a large number of calculations with intermediates placed in various orientations and locations at the surface. Our results show that the least stable intermediate is CO2H and therefore a key bottleneck is the reduction of CO2 to formic acid. Hydrogen adsorption is also weak and would also be a limiting factor, unless very high pressures of hydrogen are used. The results from our DFTB approach are in good agreement with the hybrid functional based density functional theory calculations presented in the literature.

4.
ACS Nano ; 12(7): 7301-7311, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29953817

RESUMO

We report significant improvements in the optoelectronic properties of lead halide perovskites with the addition of monovalent ions with ionic radii close to Pb2+. We investigate the chemical distribution and electronic structure of solution processed CH3NH3PbI3 perovskite structures containing Na+, Cu+, and Ag+, which are lower valence metal ions than Pb2+ but have similar ionic radii. Synchrotron X-ray diffraction reveals a pronounced shift in the main perovskite peaks for the monovalent cation-based films, suggesting incorporation of these cations into the perovskite lattice as well as a preferential crystal growth in Ag+ containing perovskite structures. Furthermore, the synchrotron X-ray photoelectron measurements show a significant change in the valence band position for Cu- and Ag-doped films, although the perovskite bandgap remains the same, indicating a shift in the Fermi level position toward the middle of the bandgap. Such a shift infers that incorporation of these monovalent cations dedope the n-type perovskite films when formed without added cations. This dedoping effect leads to cleaner bandgaps as reflected by the lower energetic disorder in the monovalent cation-doped perovskite thin films as compared to pristine films. We also find that in contrast to Ag+ and Cu+, Na+ locates mainly at the grain boundaries and surfaces. Our theoretical calculations confirm the observed shifts in X-ray diffraction peaks and Fermi level as well as absence of intrabandgap states upon energetically favorable doping of perovskite lattice by the monovalent cations. We also model a significant change in the local structure, chemical bonding of metal-halide, and the electronic structure in the doped perovskites. In summary, our work highlights the local chemistry and influence of monovalent cation dopants on crystallization and the electronic structure in the doped perovskite thin films.

5.
Small ; 13(20)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28374954

RESUMO

Materials with controllable multifunctional abilities for optical imaging (OI) and magnetic resonant imaging (MRI) that also can be used in photodynamic therapy are very interesting for future applications. Mesoporous TiO2 sub-micrometer particles are doped with gadolinium to improve photoluminescence functionality and spin relaxation for MRI, with the added benefit of enhanced generation of reactive oxygen species (ROS). The Gd-doped TiO2 exhibits red emission at 637 nm that is beneficial for OI and significantly improves MRI relaxation times, with a beneficial decrease in spin-lattice and spin-spin relaxation times. Density functional theory calculations show that Gd3+ ions introduce impurity energy levels inside the bandgap of anatase TiO2 , and also create dipoles that are beneficial for charge separation and decreased electron-hole recombination in the doped lattice. The Gd-doped TiO2 nanobeads (NBs) show enhanced ability for ROS monitored via • OH radical photogeneration, in comparison with undoped TiO2 nanobeads and TiO2 P25, for Gd-doping up to 10%. Cellular internalization and biocompatibility of TiO2 @xGd NBs are tested in vitro on MG-63 human osteosarcoma cells, showing full biocompatibility. After photoactivation of the particles, anticancer trace by means of ROS photogeneration is observed just after 3 min irradiation.


Assuntos
Gadolínio/química , Luminescência , Nanopartículas/química , Neoplasias/diagnóstico , Neoplasias/terapia , Espécies Reativas de Oxigênio/metabolismo , Marcadores de Spin , Titânio/química , Catálise , Linhagem Celular Tumoral , Sobrevivência Celular , Teoria da Densidade Funcional , Humanos , Radical Hidroxila/química , Imageamento por Ressonância Magnética , Nanopartículas/ultraestrutura , Imagem Óptica , Porosidade , Temperatura , Raios Ultravioleta , Difração de Raios X
6.
ACS Nano ; 11(3): 2823-2834, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28240871

RESUMO

Organometallic halide perovskites (OMHPs) have recently emerged as a promising class of materials in photovoltaic technology. Here, we present an in-depth investigation of the physics in these systems by measuring the photoinduced absorption (PIA) in OMHPs as a function of materials composition, excitation wavelength, and modulation frequency. We report a photoinduced Stark effect that depends on the excitation wavelength and on the dipole strength of the monovalent cations in the A position of the ABX3 perovskite. The results presented are corroborated by density functional theory calculations and provide fundamental information about the photoinduced local electric field change under blue and red excitation as well as insights into the mechanism of light-induced ion displacement in OMHPs. For optimized perovskite solar cell devices beyond 19% efficiency, we show that excess thermalization energy of blue photons plays a role in overcoming the activation energy for ion diffusion.

7.
Protoplasma ; 253(6): 1439-1447, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26497540

RESUMO

Despite great efforts in tissue engineering of the ureter, urinary bladder, and urethra, further research is needed in order to improve the patient's quality of life and minimize the economic burden of different lower urinary tract disorders. The nanostructured titanium dioxide (TiO2) scaffolds have a wide range of clinical applications and are already widely used in orthopedic or dental medicine. The current study was conducted to synthesize TiO2 nanotubes by the anodization method and TiO2 nanowires and nanospheres by the chemical vapor deposition method. These scaffolds were characterized with scanning electron microscopy (SEM) and X-ray diffraction (XRD) methods. In order to test the urologic applicability of generated TiO2 scaffolds, we seeded the normal porcine urothelial (NPU) cells on TiO2 nanotubes, TiO2 nanowires, TiO2 nanospheres, and on the standard porous membrane. The viability and growth of the cells were monitored everyday, and after 3 weeks of culturing, the analysis with scanning electron microscope (SEM) was performed. Our results showed that the NPU cells were attached on all scaffolds; they were viable and formed a multilayered epithelium, i.e., urothelium. The apical plasma membrane of the majority of superficial NPU cells, grown on all three different TiO2 scaffolds and on the porous membrane, exhibited microvilli; thus, indicating that they were at a similar differentiation stage. The maximal caliper diameter measurements of superficial NPU cells revealed significant alterations, with the largest cells being observed on nanowires and the smallest ones on the porous membrane. Our findings indicate that different nanostructured TiO2 scaffolds, especially nanowires, have a great potential for tissue engineering and should be further investigated for various urologic applications.


Assuntos
Materiais Biocompatíveis/farmacologia , Teste de Materiais/métodos , Nanoestruturas/química , Alicerces Teciduais/química , Titânio/farmacologia , Urologia/métodos , Animais , Células Cultivadas , Nanoestruturas/ultraestrutura , Nanofios/ultraestrutura , Sus scrofa , Urotélio/citologia
8.
J Phys Chem Lett ; 6(21): 4259-64, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26538041

RESUMO

Conductivity of methylammonium lead triiodide (MAPbI3) perovskite was measured on different mesoporous metal oxide scaffolds: TiO2, Al2O3, and ZrO2, as a function of incident light irradiation and temperature. It was found that MAPbI3 exhibits intrinsic charge separation, and its conductivity stems from a majority of free charge carriers. The crystal morphology of the MAPbI3 was found to significantly affect the photoconductivity, whereas in the dark the conductivity is governed by the perovskite in the pores of the mesoporous scaffold. The temperature-dependent conductivity measurements also indicate the presence of states within the band gap of the perovskite. Despite a relatively large amount of crystal defects in the measured material, the main recombination mechanism of the photogenerated charges is bimolecular (band-to-band), which suggests that the defect states are rather inactive in the recombination. This may explain the remarkable efficiencies obtained for perovskite solar cells prepared with wet-chemical methods.

9.
Sci Rep ; 5: 14571, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26415561

RESUMO

Throughout the world, there are increasing demands for alternate approaches to advanced cancer therapeutics. Numerous potentially chemotherapeutic compounds are developed every year for clinical trial and some of them are considered as potential drug candidates. Nanotechnology-based approaches have accelerated the discovery process, but the key challenge still remains to develop therapeutically viable and physiologically safe materials suitable for cancer therapy. Here, we report a high turnover, on/off-switchable functionally popping reactive oxygen species (ROS) generator using a smart mesoporous titanium dioxide popcorn (TiO2 Pops) nanoarchitecture. The resulting TiO2 Pops, unlike TiO2 nanoparticles (TiO2 NPs), are exceptionally biocompatible with normal cells. Under identical conditions, TiO2 Pops show very high photocatalytic activity compared to TiO2 NPs. Upon on/off-switchable photo activation, the TiO2 Pops can trigger the generation of high-turnover flash ROS and can deliver their potential anticancer effect by enhancing the intracellular ROS level until it crosses the threshold to open the 'death gate', thus reducing the survival of cancer cells by at least six times in comparison with TiO2 NPs without affecting the normal cells.


Assuntos
Antineoplásicos/toxicidade , Nanopartículas Metálicas/toxicidade , Espécies Reativas de Oxigênio/agonistas , Titânio/farmacologia , Antineoplásicos/síntese química , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Células HEK293 , Humanos , Luz , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Especificidade de Órgãos , Estresse Oxidativo , Processos Fotoquímicos , Espécies Reativas de Oxigênio/metabolismo , Titânio/química
10.
Phys Chem Chem Phys ; 17(26): 16744-51, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26061451

RESUMO

Dye-sensitized mesoporous TiO2 films have been widely applied in energy and environmental science related research fields. The interaction between accumulated electrons inside TiO2 and cations in the surrounding electrolyte at the TiO2/dye/electrolyte interface is, however, still poorly understood. This interaction is undoubtedly important for both device performance and fundamental understanding. In the present study, Stark effects of an organic dye, LEG4, adsorbed on TiO2 were well characterized and used as a probe to monitor the local electric field at the TiO2/dye/electrolyte interface. By using time-resolved photo- and potential-induced absorption techniques, we found evidence for a slow (t > 0.1 s) local charge compensation mechanism, which follows electron accumulation inside the mesoporous TiO2. This slow local compensation was attributed to the penetration of cations from the electrolyte into the adsorbed dye layer, leading to a more localized charge compensation of the electrons inside TiO2. Importantly, when the electrons inside TiO2 were extracted, a remarkable reversal of the surface electric field was observed for the first time, which is attributed to the penetrated and/or adsorbed cations now being charge compensated by anions in the bulk electrolyte. A cation electrosorption model is developed to account for the overall process. These findings give new insights into the mesoporous TiO2/dye/electrolyte interface and the electron-cation interaction mechanism. Electrosorbed cations are proposed to act as electrostatic trap states for electrons in the mesoporous TiO2 electrode.

11.
Nanoscale ; 7(23): 10438-48, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-26001096

RESUMO

Novel mesoporous TiO2@DNA nanohybrid electrodes, combining covalently encoded DNA with mesoporous TiO2 microbeads using dopamine as a linker, were prepared and characterised for application in supercapacitors. Detailed information about donor density, charge transfer resistance and chemical capacitance, which have an important role in the performance of an electrochemical device, were studied by electrochemical methods. The results indicated the improvement of electrochemical performance of the TiO2 nanohybrid electrode by DNA surface functionalisation. A supercapacitor was constructed from TiO2@DNA nanohybrids with PBS as the electrolyte. From the supercapacitor experiment, it was found that the addition of DNA played an important role in improving the specific capacitance (Cs) of the TiO2 supercapacitor. The highest Cs value of 8 F g(-1) was observed for TiO2@DNA nanohybrids. The nanohybrid electrodes were shown to be stable over long-term cycling, retaining 95% of their initial specific capacitance after 1500 cycles.


Assuntos
DNA/química , Capacitância Elétrica , Fontes de Energia Elétrica , Nanoconjugados/química , Titânio/química , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Nanoconjugados/ultraestrutura
12.
Photochem Photobiol Sci ; 14(3): 583-90, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25385056

RESUMO

The differentiation of urothelial cells results in normal terminally differentiated cells or by alternative pathways in low-grade or high-grade urothelial carcinomas. Treatments with traditional surgical and chemotherapeutical approaches are still inadequate and expensive, as bladder tumours are generally highly recurrent. In such situations, alternative approaches, using irradiation of the cells and nanoparticles, are promising. The ways in which urothelial cells, at different differentiation levels, respond to UV-irradiation (photolytic treatment) or to the combination of UV-irradiation and nanoparticles (photocatalytic treatment), are unknown. Here we tested cytotoxicity of UV-irradiation on (i) normal porcine urothelial cells (NPU), (ii) human low-grade urothelial cancer cells (RT4), and (iii) human high-grade urothelial cancer cells (T24). The results have shown that 1 minute of UV-irradiation is enough to kill 90% of the cells in NPU and RT4 cultures, as determined by the live/dead viability assay. On the other hand, the majority of T24 cells survived 1 minute of UV-irradiation. Moreover, even a prolonged UV-irradiation for 30 minutes killed <50% of T24 cells. When T24 cells were pre-supplemented with mesoporous TiO2 microbeads and then UV-irradiated, the viability of these high-grade urothelial cancer cells was reduced to <10%, which points to the highly efficient cytotoxic effects of TiO2 photocatalysis. Using electron microscopy, we confirmed that the mesoporous TiO2 microbeads were internalized into T24 cells, and that the cell's ultrastructure was heavily compromised after UV-irradiation. In conclusion, our results show major differences in the sensitivity to UV-irradiation among the urothelial cells with respect to cell differentiation. To achieve an increased cytotoxicity of urothelial cancer cells, the photocatalytic approach is recommended.


Assuntos
Microesferas , Titânio/química , Titânio/farmacologia , Raios Ultravioleta , Neoplasias Urológicas/patologia , Urotélio/efeitos dos fármacos , Urotélio/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Humanos , Gradação de Tumores , Urotélio/patologia
13.
Phys Chem Chem Phys ; 16(18): 8503-8, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24668285

RESUMO

The effect of dye coverage of the mesoporous TiO2 electrode on the performance of dye-sensitized solar cells based on the cobalt tris(bipyridine) electrolyte and the D35 dye was studied in detail. The dye coverage was controlled by using a dye bath with different dye concentrations and containing an inert salt, LiClO4, which was found to promote equilibrium conditions in the dye adsorption process. The amount of adsorbed D35 dye on mesoporous TiO2 was reasonably fit using the Langmuir adsorption isotherm, with a binding constant of 55 000 M(-1). Upon increasing the dye coverage on the TiO2 electrode, the electron lifetime in the dye-sensitized solar cell increased remarkably, demonstrating the blocking behavior of the D35 dye at the TiO2-electrolyte interface. Consequently, the solar cell efficiency increased dramatically with the D35 dye coverage.

14.
ACS Appl Mater Interfaces ; 6(3): 2074-9, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24410094

RESUMO

Conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) doped with iron(III) tris-p-toluenesulfonate (PEDOT:Tos) having metallic conductivity was coated onto fluorine-doped tin oxide (FTO) glass and plain glass substrates and used as a counter electrode (CE) in a dye-sensitized solar cell (DSC) with a [Co(bpy)3](3+/2+) complex redox shuttle. DSCs with PEDOT:Tos/glass CE yielded power conversion efficiencies (PCE) of 6.3%, similar to that of DSCs with platinized FTO glass CE (6.1%). The PEDOT:Tos-based counter electrodes had 5 to 10 times lower charge-transfer resistance than the Pt/FTO CE in DSCs, as analyzed by impedance spectroscopy. More detailed studies in symmetrical CE-CE cells showed that the PEDOT:Tos layers are nanoporous. Not all internal area can be used catalytically under solar cell conditions and effective charge-transfer resistance was similar to that of Pt/FTO.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...