Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2457: 411-426, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35349157

RESUMO

Cells have developed mechanisms for cytoplasmic RNA transport and localization that participate in the regulation and subcellular localization of protein synthesis. In addition, plants can exchange RNA molecules between cells through plasmodesmata and to distant tissues in the phloem. These mechanisms are hijacked by RNA viruses to establish their replication complexes and to disseminate their genomes throughout the plant organism with the help of virus-encoded movement proteins (MP). Live imaging of RNA molecules is a fundamental approach to understand the regulation and molecular basis of these processes. The most widely used experimental systems for the in vivo visualization of genetically encoded RNA molecules are based on fluorescently tagged RNA binding proteins that bind to specific motifs inserted into the RNA, thus allowing the tracking of the specific RNA molecule by fluorescent microscopy. Recently, we developed the use of the E. coli RNA binding protein BglG for the imaging of RNAs tagged with BglG-binding sites in planta. We describe here the detailed method by which we use this in vivo RNA tagging system for the real-time imaging of Tobacco mosaic virus (TMV) MP mRNA.


Assuntos
Escherichia coli , Proteínas do Movimento Viral em Plantas , Escherichia coli/genética , Proteínas do Movimento Viral em Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Nicotiana/metabolismo
2.
Plant J ; 105(1): 271-282, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33098198

RESUMO

RNA transport and localization represent important post-transcriptional mechanisms to determine the subcellular localization of protein synthesis. Plants have the capacity to transport messenger (m)RNA molecules beyond the cell boundaries through plasmodesmata and over long distances in the phloem. RNA viruses exploit these transport pathways to disseminate their infections and represent important model systems to investigate RNA transport in plants. Here, we present an in vivo plant RNA-labeling system based on the Escherichia coli RNA-binding protein BglG. Using the detection of RNA in mobile RNA particles formed by viral movement protein (MP) as a model, we demonstrate the efficiency and specificity of mRNA detection by the BglG system as compared with MS2 and λN systems. Our observations show that MP mRNA is specifically associated with MP in mobile MP particles but hardly with MP localized at plasmodesmata. MP mRNA is clearly absent from MP accumulating along microtubules. We show that the in vivo BglG labeling of the MP particles depends on the presence of the BglG-binding stem-loop aptamers within the MP mRNA and that the aptamers enhance the coprecipitation of BglG by MP, thus demonstrating the presence of an MP:MP mRNA complex. The BglG system also allowed us to monitor the cell-to-cell transport of the MP mRNA, thus linking the observation of mobile MP mRNA granules with intercellular MP mRNA transport. Given its specificity demonstrated here, the BglG system may be widely applicable for studying mRNA transport and localization in plants.


Assuntos
Proteínas de Bactérias , RNA Mensageiro/ultraestrutura , RNA de Plantas/ultraestrutura , Proteínas de Ligação a RNA , Escherichia coli , Proteínas de Escherichia coli , Proteínas de Fluorescência Verde , Imunoprecipitação , Microscopia de Fluorescência , Epiderme Vegetal/metabolismo , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Nicotiana/genética
3.
Virus Res ; 235: 96-105, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28428007

RESUMO

Citrus psorosis virus and Mirafiori lettuce big-vein virus are two members of the genus Ophiovirus, family Ophioviridae. So far, how these viruses can interfere in the antiviral RNA silencing pathway is not known. In this study, using a local GFP silencing assay on Nicotiana benthamiana, the 24K-25K and the movement protein (MP) of both viruses were identified as RNA silencing suppressor proteins. Upon their co-expression with GFP in N. benthamiana 16c plants, the proteins also showed to suppress systemic RNA (GFP) silencing. The MPCPsV and 24KCPsV proteins bind long (114 nucleotides) but not short-interfering (21 nt) dsRNA, and upon transgenic expression, plants showed developmental abnormalities that coincided with an altered miRNA accumulation pattern. Furthermore, both proteins were able to suppress miRNA-induced silencing of a GFP-sensor construct and the co-expression of MPCPsV and 24KCPsV exhibited a stronger effect, suggesting they act at different stages of the RNAi pathway.


Assuntos
Interações Hospedeiro-Patógeno , Nicotiana/imunologia , Nicotiana/virologia , Doenças das Plantas/virologia , Vírus de Plantas/patogenicidade , Interferência de RNA , Vírus de RNA/patogenicidade , Proteínas Virais/metabolismo , Fatores de Virulência/metabolismo
4.
Mol Plant Pathol ; 17(6): 973-84, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26661733

RESUMO

Cucumber mosaic virus (CMV) has the broadest host range among plant viruses, causing enormous losses in agriculture. In melon, strains of subgroup II are unable to establish a systemic infection in the near-isogenic line SC12-1-99, which carries the recessive resistance gene cmv1 from the accession PI 161375, cultivar 'Songwhan Charmi'. Strains of subgroup I overcome cmv1 resistance in a manner dependent on the movement protein. We characterized the resistance conferred by cmv1 and established that CMV-LS (subgroup II) can move from cell to cell up to the veins in the inoculated leaf, but cannot enter the phloem. Immunogold labelling at transmission electron microscopy level showed that CMV-LS remains restricted to the bundle sheath (BS) cells in the resistant line, and does not invade vascular parenchyma or intermediary cells, whereas, in the susceptible line 'Piel de Sapo' (PS), the virus invades all vein cell types. These observations indicate that the resistant allele of cmv1 restricts systemic infection in a virus strain- and cell type-specific manner by acting as an important gatekeeper for virus progression from BS cells to phloem cells. Graft inoculation experiments showed that CMV-LS cannot move from the infected PS stock into the resistant cmv1 scion, thus suggesting an additional role for cmv1 related to CMV transport within or exit from the phloem. The characterization of this new form of recessive resistance, based on a restriction of virus systemic movement, opens up the possibility to design alternative approaches for breeding strategies in melon.


Assuntos
Cucumovirus/fisiologia , Cucurbitaceae/metabolismo , Cucurbitaceae/virologia , Genes de Plantas , Floema/virologia , Proteínas de Plantas/metabolismo , Cucurbitaceae/genética , Cucurbitaceae/ultraestrutura , Resistência à Doença , Modelos Biológicos , Floema/ultraestrutura , Doenças das Plantas/virologia , Folhas de Planta/virologia , Proteínas de Plantas/genética
5.
J Cell Sci ; 128(11): 2033-46, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25908862

RESUMO

The preprophase band of microtubules performs the crucial function of marking the plane of cell division. Although the preprophase band depolymerises at the onset of mitosis, the division plane is 'memorized' by a cortical division zone to which the phragmoplast is attracted during cytokinesis. Proteins have been discovered that are part of the molecular memory but little is known about how they contribute to phragmoplast guidance. Previously, we found that the microtubule-associated protein AIR9 is found in the cortical division zone at preprophase and returns during cell plate insertion but is absent from the cortex during the intervening mitosis. To identify new components of the preprophase memory, we searched for proteins that interact with AIR9. We detected the kinesin-like calmodulin-binding protein, KCBP, which can be visualized at the predicted cortical site throughout division. A truncation study of KCBP indicates that its MyTH4-FERM domain is required for linking the motor domain to the cortex. These results suggest a mechanism by which minus-end-directed KCBP helps guide the centrifugally expanding phragmoplast to the cortical division site.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose/fisiologia , Cinesinas/metabolismo , Microtúbulos/metabolismo
6.
Plant J ; 75(2): 290-308, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23379770

RESUMO

Viruses use and subvert host cell mechanisms to support their replication and spread between cells, tissues and organisms. Microtubules and associated motor proteins play important roles in these processes in animal systems, and may also play a role in plants. Although transport processes in plants are mostly actin based, studies, in particular with Tobacco mosaic virus (TMV) and its movement protein (MP), indicate direct or indirect roles of microtubules in the cell-to-cell spread of infection. Detailed observations suggest that microtubules participate in the cortical anchorage of viral replication complexes, in guiding their trafficking along the endoplasmic reticulum (ER)/actin network, and also in developing the complexes into virus factories. Microtubules also play a role in the plant-to-plant transmission of Cauliflower mosaic virus (CaMV) by assisting in the development of specific virus-induced inclusions that facilitate viral uptake by aphids. The involvement of microtubules in the formation of virus factories and of other virus-induced inclusions suggests the existence of aggresomal pathways by which plant cells recruit membranes and proteins into localized macromolecular assemblies. Although studies related to the involvement of microtubules in the interaction of viruses with plants focus on specific virus models, a number of observations with other virus species suggest that microtubules may have a widespread role in viral pathogenesis.


Assuntos
Microtúbulos/virologia , Vírus de Plantas/fisiologia , Replicação Viral , Animais , Caulimovirus/fisiologia , Citoesqueleto/virologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Insetos/virologia , Doenças das Plantas/virologia , Proteínas do Movimento Viral em Plantas/metabolismo , Vírus de Plantas/patogenicidade , Vírus do Mosaico do Tabaco/patogenicidade , Vírus do Mosaico do Tabaco/fisiologia
7.
Front Plant Sci ; 3: 193, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22973280

RESUMO

Studies during the last 25 years have provided increasing evidence for the ability of plants to support the cell-to-cell and systemic transport of RNA molecules and that this process plays a role in plant development and in the systemic orchestration of cellular responses against pathogens and other environmental challenges. Since RNA viruses exploit the cellular RNA transport machineries for spreading their genomes between cells they represent convenient models to investigate the underlying mechanisms. In this regard, the intercellular spread of Tobacco mosaic virus (TMV) has been studied for many years. The RNA of TMV moves cell-to-cell in a non-encapsidated form in a process depending on virus-encoded movement protein (MP). Here, we discuss the current state of the art in studies using TMV and its MP as a model for RNA transport. While the ability of plants to transport viral and cellular RNA molecules is consistent with RNA transport phenomena in other systems, further studies are needed to increase our ability to visualize viral RNA (vRNA) in vivo and to distinguish RNA-transport related processes from those involved in antiviral defense.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...