Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol Evol ; 15(4)2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36930540

RESUMO

Fungi have evolved over millions of years and their species diversity is predicted to be the second largest on the earth. Fungi have cross-kingdom interactions with many organisms that have mutually shaped their evolutionary trajectories. Zygomycete fungi hold a pivotal position in the fungal tree of life and provide important perspectives on the early evolution of fungi from aquatic to terrestrial environments. Phylogenomic analyses have found that zygomycete fungi diversified into two separate clades, the Mucoromycota which are frequently associated with plants and Zoopagomycota that are commonly animal-associated fungi. Genetic elements that contributed to the fitness and divergence of these lineages may have been shaped by the varied interactions these fungi have had with plants, animals, bacteria, and other microbes. To investigate this, we performed comparative genomic analyses of the two clades of zygomycetes in the context of Kingdom Fungi, benefiting from our generation of a new collection of zygomycete genomes, including nine produced for this study. We identified lineage-specific genomic content that may contribute to the disparate biology observed in these zygomycetes. Our findings include the discovery of undescribed diversity in CotH, a Mucormycosis pathogenicity factor, which was found in a broad set of zygomycetes. Reconciliation analysis identified multiple duplication events and an expansion of CotH copies throughout the Mucoromycotina, Mortierellomycotina, Neocallimastigomycota, and Basidiobolus lineages. A kingdom-level phylogenomic analysis also identified new evolutionary relationships within the subphyla of Mucoromycota and Zoopagomycota, including supporting the sister-clade relationship between Glomeromycotina and Mortierellomycotina and the placement of Basidiobolus as sister to other Zoopagomycota lineages.


Assuntos
Glomeromycota , Mucormicose , Animais , Mucormicose/genética , Fungos/genética , Filogenia , Glomeromycota/genética , Plantas/genética , Genoma Fúngico , Evolução Molecular
2.
PLoS One ; 16(9): e0257823, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34587206

RESUMO

Fungal hyphal growth and branching are essential traits that allow fungi to spread and proliferate in many environments. This sustained growth is essential for a myriad of applications in health, agriculture, and industry. However, comparisons between different fungi are difficult in the absence of standardized metrics. Here, we used a microfluidic device featuring four different maze patterns to compare the growth velocity and branching frequency of fourteen filamentous fungi. These measurements result from the collective work of several labs in the form of a competition named the "Fungus Olympics." The competing fungi included five ascomycete species (ten strains total), two basidiomycete species, and two zygomycete species. We found that growth velocity within a straight channel varied from 1 to 4 µm/min. We also found that the time to complete mazes when fungal hyphae branched or turned at various angles did not correlate with linear growth velocity. We discovered that fungi in our study used one of two distinct strategies to traverse mazes: high-frequency branching in which all possible paths were explored, and low-frequency branching in which only one or two paths were explored. While the high-frequency branching helped fungi escape mazes with sharp turns faster, the low-frequency turning had a significant advantage in mazes with shallower turns. Future work will more systematically examine these trends.


Assuntos
Crowdsourcing/métodos , Fungos/crescimento & desenvolvimento , Técnicas Analíticas Microfluídicas/instrumentação , Ascomicetos/crescimento & desenvolvimento , Basidiomycota/crescimento & desenvolvimento , Fenômenos Biológicos , Fungos/classificação , Hifas/classificação , Hifas/crescimento & desenvolvimento , Especificidade da Espécie
3.
J Fungi (Basel) ; 7(5)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067070

RESUMO

Coccidioides immitis and C. posadasii are dimorphic fungi that transform from mycelia with internal arthroconidia in the soil to a tissue form known as a spherule in mammals. This process can be recapitulated in vitro by increasing the temperature, CO2 and changing other culture conditions. In this study, we have analyzed changes in gene expression in mycelia and young and mature spherules. Genes that were highly upregulated in young spherules include a spherule surface protein and iron and copper membrane transporters. Genes that are unique to Coccidioides spp. are also overrepresented in this group, suggesting that they may be important for spherule differentiation. Enriched GO terms in young spherule upregulated genes include oxidation-reduction, response to stress and membrane proteins. Downregulated genes are enriched for transcription factors, especially helix-loop-helix and C2H2 type zinc finger domain-containing proteins, which is consistent with the dramatic change in transcriptional profile. Almost all genes that are upregulated in young spherules remain upregulated in mature spherules, but a small number of genes are differentially expressed in those two stages of spherule development. Mature spherules express more Hsp31 and amylase and less tyrosinase than young spherules. Some expression of transposons was detected and most of the differentially expressed transposons were upregulated in spherules.

4.
Evodevo ; 7: 13, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27413529

RESUMO

BACKGROUND: The microvillus is a versatile organelle that serves important functions in disparate animal cell types. However, from a molecular perspective, the microvillus has been well studied in only a few, predominantly vertebrate, contexts. Little is known about how differences in microvillar structure contribute to differences in function, and how these differences evolved. We sequenced the transcriptome of the freshwater sponge, Ephydatia muelleri, and examined the expression of vertebrate microvillar gene homologs in choanocytes-the only microvilli-bearing cell type present in sponges. Sponges offer a distant phylogenetic comparison with vertebrates, and choanocytes are central to discussions about early animal evolution due to their similarity with choanoflagellates, the single-celled sister lineage of modern animals. RESULTS: We found that, from a genomic perspective, sponges have conserved homologs of most vertebrate microvillar genes, most of which are expressed in choanocytes, and many of which exhibit choanocyte-specific or choanocyte-enriched expression. Possible exceptions include the cadherins that form intermicrovillar links in the enterocyte brush border and hair cell stereocilia of vertebrates and cnidarians. No obvious orthologs of these proteins were detected in sponges, but at least four candidate cadherins were identified as choanocyte-enriched and might serve this function. In contrast to the evidence for conserved microvillar structure in sponges and vertebrates, we found that choanoflagellates and ctenophores lack homologs of many fundamental microvillar genes, suggesting that microvillar structure may diverge significantly in these lineages, warranting further study. CONCLUSIONS: The available evidence suggests that microvilli evolved early in the prehistory of modern animals and have been repurposed to serve myriad functions in different cellular contexts. Detailed understanding of the sequence by which different microvilli-bearing cell/tissue types diversified will require further study of microvillar composition and development in disparate cell types and lineages. Of particular interest are the microvilli of choanoflagellates, ctenophores, and sponges, which collectively bracket the earliest events in animal evolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...