Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 10(44): 38610-38620, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30335353

RESUMO

Cleaning and passivation of metal surfaces are necessary steps for selective film deposition processes that are attractive for some microelectronic applications (e.g., fully aligned vias or self-aligned contacts). For copper, there is limited knowledge about the mechanisms of the copper oxide reduction process and subsequent passivation layer formation reactions. We have investigated the in situ cleaning (i.e., oxidation and reduction by vapor-phase species) and passivation of chemical-mechanical polishing (CMP)-prepared Cu films in an effort to derive the mechanisms associated with selectively tailoring the surface chemistry. By monitoring the interaction of vapor-phase ethanol with the surface species generated after ozone cleaning at 300 °C, we find that the optimum procedure to remove these species and avoid byproduct redeposition is to use atomic layer deposition (ALD)-like binary cycles of ethanol and N2, with active pumping. We have further explored passivation of clean Cu using benzotriazole and 2,2'-bipyridine in an ALD environment. Both molecules chemisorb on clean Cu in an upright orientation, with respect to the metal surface at temperatures higher than the melting point of the organic inhibitors (100 ≤ T < 300 °C). Both molecules desorb without decomposition from clean Cu above 300 °C but not from Cu2O. Previous studies related to the passivation of Cu surfaces using heterocyclic amines have focused on solution-based or ultrahigh vacuum applications of the passivation molecules onto single crystalline Cu samples. The present work explores more industrially relevant vapor-phase passivation of CMP-cleaned, electroplated Cu samples using ALD-like processing conditions and in situ vapor-phase cleaning.

2.
Langmuir ; 34(8): 2619-2629, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29381069

RESUMO

Despite the success of plasma-enhanced atomic layer deposition (PEALD) in depositing quality silicon nitride films, a fundamental understanding of the growth mechanism has been difficult to obtain because of lack of in situ characterization to probe the surface reactions noninvasively and the complexity of reactions induced/enhanced by the plasma. These challenges have hindered the direct observation of intermediate species formed during the reactions. We address this challenge by examining the interaction of Ar plasma using atomically flat, monohydride-terminated Si(111) as a well-defined model surface and focusing on the initial PEALD with aminosilanes. In situ infrared and X-ray photoelectron spectroscopy reveals that an Ar plasma induces desorption of H atoms from H-Si(111) surfaces, leaving Si dangling bonds, and that the reaction of di-sec-butylaminosilane (DSBAS) with Ar plasma-treated surfaces requires the presence of both active sites (Si dangling bonds) and Si-H; there is no reaction on fully H-terminated or activated surfaces. By contrast, high-quality hydrofluoric acid-etched Si3N4 surfaces readily react with DSBAS, resulting in the formation of O-SiH3. However, the presence of back-bonded oxygen in O-SiH3 inhibits H desorption by Ar or N2 plasma, presumably because of stabilization of H against ion-induced desorption. Consequently, there is no reaction of adsorbed aminosilanes even after extensive Ar or N2 plasma treatments; a thermal process is necessary to partially remove H, thereby promoting the formation of active sites. These observations are consistent with a mechanism requiring the presence of both undercoordinated nitrogen and/or dangling bonds and unreacted surface hydrogen. Because active sites are involved, the PEALD process is found to be sensitive to the duration of the plasma exposure treatment and the purge time, during which passivation of these sites can occur.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...