Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2402723, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38665115

RESUMO

Magnetism in two dimensions is traditionally considered an exotic phase mediated by spin fluctuations, but far from collinearly ordered in the ground state. Recently, 2D magnetic states have been discovered in layered van der Waals compounds. Their robust and tunable magnetic state by material composition, combined with reduced dimensionality, foresee a strong potential as a key element in magnetic devices. Here, a class of 2D magnets based on metallic chlorides is presented. The magnetic order survives on top of a metallic substrate, even down to the monolayer limit, and can be switched from perpendicular to in-plane by substituting the metal ion from iron to nickel. Using functionalized STM tips as magnetic sensors, local exchange fields are identified, even in the absence of an external magnetic field. Since the compounds are processable by molecular beam epitaxy techniques, they provide a platform with large potential for incorporation into current device technologies.

3.
Nat Commun ; 13(1): 4341, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896541

RESUMO

Earth-abundant electrocatalysts for the oxygen evolution reaction (OER) able to work in acidic working conditions are elusive. While many first-row transition metal oxides are competitive in alkaline media, most of them just dissolve or become inactive at high proton concentrations where hydrogen evolution is preferred. Only noble-metal catalysts, such as IrO2, are fast and stable enough in acidic media. Herein, we report the excellent activity and long-term stability of Co3O4-based anodes in 1 M H2SO4 (pH 0.1) when processed in a partially hydrophobic carbon-based protecting matrix. These Co3O4@C composites reliably drive O2 evolution a 10 mA cm-2 current density for >40 h without appearance of performance fatigue, successfully passing benchmarking protocols without incorporating noble metals. Our strategy opens an alternative venue towards fast, energy efficient acid-media water oxidation electrodes.

4.
ACS Nano ; 15(9): 14985-14995, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34491033

RESUMO

Metal halides are a class of layered materials with promising electronic and magnetic properties persisting down to the two-dimensional limit. While most recent studies focused on the trihalide components of this family, the rather unexplored metal dihalides are also van der Waals layered systems with distinctive magnetic properties. Here we show that the dihalide NiBr2 grows epitaxially on a Au(111) substrate and exhibits semiconducting and magnetic behavior starting from a single layer. Through a combination of a low-temperature scanning-tunneling microscopy, low-energy electron diffraction, X-ray photoelectron spectroscopy, and photoemission electron microscopy, we identify two competing layer structures of NiBr2 coexisting at the interface and a stoichiometrically pure layer-by-layer growth beyond. Interestingly, X-ray absorption spectroscopy measurements revealed a magnetically ordered state below 27 K with in-plane magnetic anisotropy and zero-remanence in the single layer of NiBr2/Au(111), which we attribute to a noncollinear magnetic structure. The combination of such two-dimensional magnetic order with the semiconducting behavior down to the 2D limit offers the attractive perspective of using these films as ultrathin crystalline barriers in tunneling junctions and low-dimensional devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...