Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 17(11): 3207-3217, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36288793

RESUMO

Mycobacteria produce several unusual cofactors that contribute to their metabolic versatility and capability to survive in different environments. Mycofactocin (MFT) is a redox cofactor involved in ethanol metabolism. The redox-active core moiety of mycofactocin is derived from the short precursor peptide MftA, which is modified by several maturases. Recently, it has been shown that the core moiety is decorated by a ß-1,4-glucan chain. Remarkably, the second glucose moiety of the oligosaccharide chain was found to be 2-O-methylated in Mycolicibacterium smegmatis. The biosynthetic gene responsible for this methylation, however, remained elusive, and no methyltransferase gene was part of the MFT biosynthetic gene cluster. Here, we applied reverse genetics to identify the gene product of MSMEG_6237 (mftM) as the SAM-dependent methyltransferase was responsible for methylation of the cofactor in M. smegmatis. According to metabolic analysis and comparative genomics, the occurrence of methylated MFT species was correlated with the presence of mftM homologues in the genomes of mycofactocin producers. This study revealed that the pathogen Mycobacterium tuberculosis does not methylate mycofactocins. Interestingly, mftM homologues co-occur with both mycofactocin biosynthesis genes as well as the putative mycofactocin-dependent alcohol dehydrogenase Mdo. We further showed that mftM knock-out mutants of M. smegmatis suffer from a prolonged lag phase when grown on ethanol as a carbon source. In addition, in vitro digestion of the glucose chain by cellulase suggested a protective function of glucan methylation. These results close an important knowledge gap and provide a basis for future studies into the physiological functions of this unusual cofactor modification.


Assuntos
Mycobacterium tuberculosis , S-Adenosilmetionina , S-Adenosilmetionina/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Metilação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Oxirredução , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Etanol , Glucose
2.
Front Bioeng Biotechnol ; 8: 593781, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33344432

RESUMO

Mycofactocin (MFT) is a recently discovered glycosylated redox cofactor, which has been associated with the detoxification of antibiotics in pathogenic mycobacteria, and, therefore, of potential medical interest. The MFT biosynthetic gene cluster is commonly found in mycobacteria, including Mycobacterium tuberculosis, the causative agent of tuberculosis. Since the MFT molecule is highly interesting for basic research and could even serve as a potential drug target, large-scale production of the molecule is highly desired. However, conventional shake flask cultivations failed to produce enough MFT for further biochemical characterization like kinetic studies and structure elucidation, and a more comprehensive study of cultivation parameters is urgently needed. Being a redox cofactor, it can be hypothesized that the oxygen transfer rate (OTR) is a critical parameter for MFT formation. Using the non-pathogenic strain Mycobacterium smegmatis mc2 155, shake flask experiments with online measurement of the oxygen uptake and the carbon dioxide formation, were conducted under different levels of oxygen supply. Using liquid chromatography and high-resolution mass spectrometry, a 4-8 times increase of MFT production was identified under oxygen-limited conditions, in both complex and mineral medium. Moreover, the level of oxygen supply modulates not only the overall MFT formation but also the length of the glycosidic chain. Finally, all results were scaled up into a 7 L stirred tank reactor to elucidate the kinetics of MFT formation. Ultimately, this study enables the production of high amounts of these redox cofactors, to perform further investigations into the role and importance of MFTs.

3.
Chem Sci ; 11(20): 5182-5190, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-33014324

RESUMO

Mycofactocin (MFT) is a redox cofactor belonging to the family of ribosomally synthesized and post-translationally modified peptides (RiPPs) and is involved in alcohol metabolism of mycobacteria including Mycobacterium tuberculosis. A preliminary biosynthetic model had been established by bioinformatics and in vitro studies, while the structure of natural MFT and key biosynthetic steps remained elusive. Here, we report the discovery of glycosylated MFT by 13C-labeling metabolomics and establish a model of its biosynthesis in Mycolicibacterium smegmatis. Extensive structure elucidation including NMR revealed that MFT is decorated with up to nine ß-1,4-linked glucose residues including 2-O-methylglucose. Dissection of biosynthetic genes demonstrated that the oligoglycosylation is catalyzed by the glycosyltransferase MftF. Furthermore, we confirm the redox cofactor function of glycosylated MFTs by activity-based metabolic profiling using the carveol dehydrogenase LimC and show that the MFT pool expands during cultivation on ethanol. Our results will guide future studies into the biochemical functions and physiological roles of MFT in bacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...