Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 2(4): 100899, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34766029

RESUMO

Here, we describe a detailed step-by-step protocol for the expression, purification, quantification, and activity determination of key enzymes for molecular detection of pathogens. Based on previous reports, we optimized the protocol for LbCas12a, Taq DNA polymerase, M-MLV reverse transcriptase, and TEV protease to make it compatible with minimal laboratory equipment, broadly available in low- and middle-income countries. The enzymes produced with this protocol have been successfully used for molecular detection applications. For complete details on the use and execution of this protocol, please refer to Alcántara et al. (2021a, 2021b).


Assuntos
Enzimas , Escherichia coli , Proteínas Recombinantes , Cromatografia de Afinidade , Ensaios Enzimáticos , Enzimas/genética , Enzimas/isolamento & purificação , Enzimas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Tipagem Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Transformação Bacteriana
2.
STAR Protoc ; 2(4): 100878, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34604812

RESUMO

Here, we describe a detailed step-by-step protocol to detect SARS-CoV-2 RNA using RT-PCR-mediated amplification and CRISPR/Cas-based visualization. The optimized assay uses basic molecular biology equipment such as conventional thermocyclers and transilluminators for qualitative detection. Alternatively, a fluorescence plate reader can be used for quantitative measurements. The protocol detects two regions of the SARS-CoV-2 genome in addition to the human RNaseP sample control. Aiming to reach remote regions, this work was developed to use the portable molecular workstation from BentoLab. For complete details on the use and execution of this protocol, please refer to Alcántara et al., 2021.


Assuntos
COVID-19/diagnóstico , Sistemas CRISPR-Cas , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/genética , COVID-19/genética , COVID-19/virologia , Humanos , SARS-CoV-2/isolamento & purificação
3.
Cell Rep Methods ; 1(7): 100093, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34697612

RESUMO

Low- and middle-income countries (LMICs) are significantly affected by SARS-CoV-2, partially due to their limited capacity for local production and implementation of molecular testing. Here, we provide detailed methods and validation of a molecular toolkit that can be readily produced and deployed using laboratory equipment available in LMICs. Our results show that lab-scale production of enzymes and nucleic acids can supply over 50,000 tests per production batch. The optimized one-step RT-PCR coupled to CRISPR-Cas12a-mediated detection showed a limit of detection of 102 ge/µL in a turnaround time of 2 h. The clinical validation indicated an overall sensitivity of 80%-88%, while for middle and high viral load samples (Cq ≤ 31) the sensitivity was 92%-100%. The specificity was 96%-100% regardless of viral load. Furthermore, we show that the toolkit can be used with the mobile laboratory Bento Lab, potentially enabling LMICs to implement detection services in unattended remote regions.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Países em Desenvolvimento , RNA Viral/genética , Sensibilidade e Especificidade , Técnicas de Amplificação de Ácido Nucleico
4.
PLoS One ; 14(4): e0211756, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30964875

RESUMO

Rapid Diagnostic Tests (RDTs) for malaria are restricted to a few biomarkers and antibody-mediated detection. However, the expression of commonly used biomarkers varies geographically and the sensibility of immunodetection can be affected by batch-to-batch differences or limited thermal stability. In this study we aimed to overcome these limitations by identifying a potential biomarker and by developing molecular sensors based on aptamer technology. Using gene expression databases, ribosome profiling analysis, and structural modeling, we find that the High Mobility Group Box 1 protein (HMGB1) of Plasmodium falciparum is highly expressed, structurally stable, and present along all blood-stages of P. falciparum infection. To develop biosensors, we used in vitro evolution techniques to produce DNA aptamers for the recombinantly expressed HMG-box, the conserved domain of HMGB1. An evolutionary approach for evaluating the dynamics of aptamer populations suggested three predominant aptamer motifs. Representatives of the aptamer families were tested for binding parameters to the HMG-box domain using microscale thermophoresis and rapid kinetics. Dissociation constants of the aptamers varied over two orders of magnitude between nano- and micromolar ranges while the aptamer-HMG-box interaction occurred in a few seconds. The specificity of aptamer binding to the HMG-box of P. falciparum compared to its human homolog depended on pH conditions. Altogether, our study proposes HMGB1 as a candidate biomarker and a set of sensing aptamers that can be further developed into rapid diagnostic tests for P. falciparum detection.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Proteína HMGB1/análise , Plasmodium falciparum/isolamento & purificação , Proteínas de Protozoários/análise , Sequência de Aminoácidos , Sequência de Bases , Humanos , Malária Falciparum/diagnóstico , Malária Falciparum/parasitologia , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...