Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol ; 100(2): 298-313, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37312642

RESUMO

Sunscreens provide a frontline defense for our DNA against the damage caused by ultraviolet (UV) radiation. The active ingredients in topically applied sunscreens that provide this defense are UV filters, which preferentially absorb or reflect UV radiation before it penetrates the skin and interacts with photosensitive nucleic acids. However, there are concerns related to human and environmental toxicity of current UV filters, and consequently a shift toward nature-inspired, particularly microbial, UV filters. In this paper, new physical insight is provided into the fundamental mechanisms of photoprotection in two synthetic analogs of mycosporine-like amino acid-type UV filters, demonstrating new methods of protection that are distinct from those of current commercial sunscreens, extending previous work in this area. Transient absorption measurements (both transient electronic absorption spectroscopy and transient vibrational absorption spectroscopy) are combined with steady-state studies and high-level computational results to aid our mapping of the experimentally derived lifetimes to real-time photodynamic processes. The conclusions reached here pave the way toward developing new and more efficient biomimetic DNA photoprotectant materials.


Assuntos
Protetores Solares , Raios Ultravioleta , Humanos , Protetores Solares/química , Isomerismo , Pele , DNA
2.
Nat Commun ; 13(1): 4453, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915119

RESUMO

Site- and enantioselective incorporation of deuterium into organic compounds is of broad interest in organic synthesis, especially within the pharmaceutical industry. While catalytic approaches relying on two-electron reaction manifolds have allowed for stereoselective delivery of a formal deuteride (D-) or deuteron (D+) at benzylic positions, complementary strategies that make use of one-electron deuterium atom transfer and target non-benzylic positions remain elusive. Here we report a photochemical approach for asymmetric radical deuteration by utilizing readily available peptide- or sugar-derived thiols as the catalyst and inexpensive deuterium oxide as the deuterium source. This metal-free platform enables four types of deuterofunctionalization reactions of exocyclic olefins and allows deuteration at non-benzylic positions with high levels of enantioselectivity and deuterium incorporation. Computational studies reveal that attractive non-covalent interactions are responsible for stereocontrol. We anticipate that our findings will open up new avenues for asymmetric deuteration.


Assuntos
Alcenos , Luz , Alcenos/química , Catálise , Deutério/química
3.
ACS Omega ; 7(26): 22811-22817, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35811875

RESUMO

The aza-Piancatelli reaction has been widely used to synthesize donor-acceptor Stenhouse adducts (DASAs), a new class of molecular photoswitches with unique properties. However, the substitution pattern of furan cores has been limited to position 3, as 3,4-disubstituted furans remain unreactive. Herein, we explore the aza-Piancatelli reaction mechanism using density functional theory (DFT) calculations to understand the influence of the different substituents on the reactivity. We found that all the reaction pathways are kinetically accessible, but the driving force of the reaction is lost in disubstituted furans due to the loss of conjugation in the DASA products. Finally, a simple model is proposed to guide the design of synthetic routes using this reaction.

4.
Biomedicines ; 9(12)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34944769

RESUMO

Up-Conversion materials have received great attention in drug delivery applications in recent years. A specifically emerging field includes the development of strategies focusing on photon processes that promote the development of novel platforms for the efficient transport and the controlled release of drug molecules in the harsh microenvironment. Here, modified reaction time, thermal treatment, and pH conditions were controlled in the synthesis of NaYF4:Yb,Tm up-converted (UC) material to improve its photoluminescence properties. The best blue-emission performance was achieved for the UC3 sample prepared through 24 h-synthesis without thermal treatment at a pH of 5, which promotes the presence of the ß-phase and smaller particle size. NaYF4:Yb,Tm has resulted in a highly efficient blue emitter material for light-driven drug release under near-IR wavelength. Thus, NaYF4:Yb,Tm up-converted material promotes the N-O bond cleavage of the oxime ester of Ciprofloxacin (prodrug) as a highly efficient photosensitized drug delivery process. HPLC chromatography and transient absorption spectroscopy measurements were performed to evaluate the drug release conversion rate. UC3 has resulted in a very stable and easily recovered material that can be used in several reaction cycles. This straightforward methodology can be extended to other drugs containing photoactive chromophores and is present as an alternative for drug release systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...