Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Humanit ; 41(4): 609-610, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32270354
2.
Elife ; 82019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30874502

RESUMO

In the unfolded protein response (UPR), stress in the endoplasmic reticulum (ER) activates a large transcriptional program to increase ER folding capacity. During the budding yeast UPR, Ire1 excises an intron from the HAC1 mRNA and the exon products of cleavage are ligated, and the translated protein induces hundreds of stress-response genes. Using cells with mutations in RNA repair and decay enzymes, we show that phosphorylation of two different HAC1 splicing intermediates is required for their degradation by the 5'→3' exonuclease Xrn1 to enact opposing effects on the UPR. We also found that ligated but 2'-phosphorylated HAC1 mRNA is cleaved, yielding a decay intermediate with both 5'- and 2'-phosphates at its 5'-end that inhibit 5'→3' decay and suggesting that Ire1 degrades incompletely processed HAC1. These decay events expand the scope of RNA-based regulation in the budding yeast UPR and have implications for the control of the metazoan UPR.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/biossíntese , Regulação Fúngica da Expressão Gênica , Splicing de RNA , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas Repressoras/biossíntese , Proteínas de Saccharomyces cerevisiae/biossíntese , Saccharomyces cerevisiae/fisiologia , Resposta a Proteínas não Dobradas , Exorribonucleases/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Cell Rep ; 14(5): 1142-1155, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26804911

RESUMO

Histone variant H2A.Z occupies the promoters of active and poised, bivalent genes in embryonic stem cells (ESCs) to regulate developmental programs, yet how it contributes to these contrasting states is poorly understood. Here, we investigate the function of H2A.Z.1 monoubiquitylation (H2A.Z.1ub) by mutation of the PRC1 target residues (H2A.Z.1(K3R3)). We show that H2A.Z.1(K3R3) is properly incorporated at target promoters in murine ESCs (mESCs), but loss of monoubiquitylation leads to de-repression of bivalent genes, loss of Polycomb binding, and faulty lineage commitment. Using quantitative proteomics, we find that tandem bromodomain proteins, including the BET family member BRD2, are enriched in H2A.Z.1 chromatin. We further show that BRD2 is gained at de-repressed promoters in H2A.Z.1(K3R3) mESCs, whereas BRD2 inhibition restores gene silencing at these sites. Together, our study reveals an antagonistic relationship between H2A.Z.1ub and BRD2 to regulate the transcriptional balance at bivalent genes to enable proper execution of developmental programs.


Assuntos
Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Histonas/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Ubiquitinação , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Autorrenovação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Proteínas do Grupo Polycomb/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição
4.
Nucleic Acids Res ; 43(17): e108, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26001965

RESUMO

RNA cleavage by some endoribonucleases and self-cleaving ribozymes produces RNA fragments with 5'-hydroxyl (5'-OH) and 2',3'-cyclic phosphate termini. To identify 5'-OH RNA fragments produced by these cleavage events, we exploited the unique ligation mechanism of Escherichia coli RtcB RNA ligase to attach an oligonucleotide linker to RNAs with 5'-OH termini, followed by steps for library construction and analysis by massively parallel DNA sequencing. We applied the method to RNA from budding yeast and captured known 5'-OH fragments produced by tRNA Splicing Endonuclease (SEN) during processing of intron-containing pre-tRNAs and by Ire1 cleavage of HAC1 mRNA following induction of the unfolded protein response (UPR). We identified numerous novel 5'-OH fragments derived from mRNAs: some 5'-OH mRNA fragments were derived from single, localized cleavages, while others were likely produced by multiple, distributed cleavages. Many 5'-OH fragments derived from mRNAs were produced upstream of codons for highly electrostatic peptides, suggesting that the fragments may be generated by co-translational mRNA decay. Several 5'-OH RNA fragments accumulated during the induction of the UPR, some of which share a common sequence motif that may direct cleavage of these mRNAs. This method enables specific capture of 5'-OH termini and complements existing methods for identifying RNAs with 2',3'-cyclic phosphate termini.


Assuntos
Endorribonucleases/metabolismo , Clivagem do RNA , Análise de Sequência de RNA/métodos , Aminoacil-tRNA Sintetases , Proteínas de Escherichia coli , Sequenciamento de Nucleotídeos em Larga Escala , RNA/química , Estabilidade de RNA , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Resposta a Proteínas não Dobradas
5.
Methods ; 72: 57-64, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25448295

RESUMO

Epigenetic control of genome function is an important regulatory mechanism in diverse processes such as lineage commitment and environmental sensing, and in disease etiologies ranging from neuropsychiatric disorders to cancer. Here we report a robust, high-throughput targeted, quantitative mass spectrometry (MS) method to rapidly profile modifications of the core histones of chromatin that compose the epigenetic landscape, enabling comparisons among cells with differing genetic backgrounds, genomic perturbations, and drug treatments.


Assuntos
Cromatina/química , Epigenômica/métodos , Espectrometria de Massas/métodos , Genômica , Histonas/metabolismo , Humanos , Processamento de Proteína Pós-Traducional , Proteômica
6.
EMBO Rep ; 15(12): 1278-85, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25366321

RESUMO

RNA ligation can regulate RNA function by altering RNA sequence, structure and coding potential. For example, the function of XBP1 in mediating the unfolded protein response requires RNA ligation, as does the maturation of some tRNAs. Here, we describe a novel in vivo model in Caenorhabditis elegans for the conserved RNA ligase RtcB and show that RtcB ligates the xbp-1 mRNA during the IRE-1 branch of the unfolded protein response. Without RtcB, protein stress results in the accumulation of unligated xbp-1 mRNA fragments, defects in the unfolded protein response, and decreased lifespan. RtcB also ligates endogenous pre-tRNA halves, and RtcB mutants have defects in growth and lifespan that can be bypassed by expression of pre-spliced tRNAs. In addition, animals that lack RtcB have defects that are independent of tRNA maturation and the unfolded protein response. Thus, RNA ligation by RtcB is required for the function of multiple endogenous target RNAs including both xbp-1 and tRNAs. RtcB is uniquely capable of performing these ligation functions, and RNA ligation by RtcB mediates multiple essential processes in vivo.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , RNA Ligase (ATP)/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , RNA Ligase (ATP)/genética , Resposta a Proteínas não Dobradas/genética , Resposta a Proteínas não Dobradas/fisiologia
7.
Mol Cell Proteomics ; 11(5): 128-37, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22442256

RESUMO

The defining step in most chromatin immunoprecipitation (ChIP) assays is the use of an antibody to enrich for a particular protein or histone modification state associated with segments of chromatin. The specificity of the antibody is critical to the interpretation of the experiment, yet this property is rarely reported. Here, we present a quantitative method using mass spectrometry to characterize the specificity of key histone H3 modification-targeting antibodies that have previously been used to characterize the "histone code." We further extend the use of these antibody reagents to the observation of long range correlations among disparate histone modifications. Using purified human histones representing the mixture of chromatin states present in living cells, we were able to quantify the degree of target enrichment and the specificity of several commonly used, commercially available ChIP grade antibodies. We found significant differences in enrichment efficiency among various reagents directed against four frequently studied chromatin marks: H3K4me2, H3K4me3, H3K9me3, and H3K27me3. For some antibodies, we also detected significant off target enrichment of alternate modifications at the same site (i.e., enrichment of H3K4me2 by an antibody directed against H3K4me3). Through cluster analysis, we were able to recognize patterns of co-enrichment of marks at different sites on the same histone protein. Surprisingly, these co-enrichments corresponded well to "canonical" chromatin states that are exemplary of activated and repressed regions of chromatin. Altogether, our findings suggest that 1) the results of ChIP experiments need to be evaluated with caution given the potential for cross-reactivity of the commonly used histone modification recognizing antibodies, 2) multiple marks with consistent biological interpretation exist on the same histone protein molecule, and 3) some components of the histone code may be transduced on single proteins in living cells.


Assuntos
Anticorpos/química , Imunoprecipitação da Cromatina , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Especificidade de Anticorpos , Análise por Conglomerados , Células HeLa , Histonas/imunologia , Histonas/isolamento & purificação , Humanos , Metilação , Fosforilação , Ligação Proteica
8.
Nature ; 477(7366): 587-91, 2011 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-21881562

RESUMO

The evolution of the amniotic egg was one of the great evolutionary innovations in the history of life, freeing vertebrates from an obligatory connection to water and thus permitting the conquest of terrestrial environments. Among amniotes, genome sequences are available for mammals and birds, but not for non-avian reptiles. Here we report the genome sequence of the North American green anole lizard, Anolis carolinensis. We find that A. carolinensis microchromosomes are highly syntenic with chicken microchromosomes, yet do not exhibit the high GC and low repeat content that are characteristic of avian microchromosomes. Also, A. carolinensis mobile elements are very young and diverse-more so than in any other sequenced amniote genome. The GC content of this lizard genome is also unusual in its homogeneity, unlike the regionally variable GC content found in mammals and birds. We describe and assign sequence to the previously unknown A. carolinensis X chromosome. Comparative gene analysis shows that amniote egg proteins have evolved significantly more rapidly than other proteins. An anole phylogeny resolves basal branches to illuminate the history of their repeated adaptive radiations.


Assuntos
Aves/genética , Evolução Molecular , Genoma/genética , Lagartos/genética , Mamíferos/genética , Animais , Galinhas/genética , Sequência Rica em GC/genética , Genômica , Humanos , Dados de Sequência Molecular , Filogenia , Sintenia/genética , Cromossomo X/genética
9.
Genome Res ; 21(2): 147-63, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21177972

RESUMO

Eukaryotic genomes are packaged in two basic forms, euchromatin and heterochromatin. We have examined the composition and organization of Drosophila melanogaster heterochromatin in different cell types using ChIP-array analysis of histone modifications and chromosomal proteins. As anticipated, the pericentric heterochromatin and chromosome 4 are on average enriched for the "silencing" marks H3K9me2, H3K9me3, HP1a, and SU(VAR)3-9, and are generally depleted for marks associated with active transcription. The locations of the euchromatin-heterochromatin borders identified by these marks are similar in animal tissues and most cell lines, although the amount of heterochromatin is variable in some cell lines. Combinatorial analysis of chromatin patterns reveals distinct profiles for euchromatin, pericentric heterochromatin, and the 4th chromosome. Both silent and active protein-coding genes in heterochromatin display complex patterns of chromosomal proteins and histone modifications; a majority of the active genes exhibit both "activation" marks (e.g., H3K4me3 and H3K36me3) and "silencing" marks (e.g., H3K9me2 and HP1a). The hallmark of active genes in heterochromatic domains appears to be a loss of H3K9 methylation at the transcription start site. We also observe complex epigenomic profiles of intergenic regions, repeated transposable element (TE) sequences, and genes in the heterochromatic extensions. An unexpectedly large fraction of sequences in the euchromatic chromosome arms exhibits a heterochromatic chromatin signature, which differs in size, position, and impact on gene expression among cell types. We conclude that patterns of heterochromatin/euchromatin packaging show greater complexity and plasticity than anticipated. This comprehensive analysis provides a foundation for future studies of gene activity and chromosomal functions that are influenced by or dependent upon heterochromatin.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Heterocromatina/metabolismo , Histonas/metabolismo , Animais , Linhagem Celular , Elementos de DNA Transponíveis/genética , Epigenômica , Eucromatina/metabolismo , Feminino , Regulação da Expressão Gênica , Inativação Gênica , Células HeLa , Histonas/química , Humanos , Masculino , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...