Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Behav Neurosci ; 15: 705579, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566592

RESUMO

The susceptibility to stress-elicited disorders is markedly influenced by sex. Women are twice as likely as men to develop posttraumatic stress disorder (PTSD), depression, anxiety disorders, and social impairments following exposure to traumatic stress. However, most of the studies in animal models examining putative therapeutics for stress-triggered impairments, including single prolonged stress (SPS), were performed predominantly with males. Previous studies in males demonstrated that intranasal neuropeptide Y (NPY) can provide therapeutic relief of many SPS-triggered behaviors, but is ineffective in females at the same dose. Thus, females may need a higher dose of exogenous NPY to attain a therapeutically significant concentration since the overwhelming majority of studies found that NPY levels in females in many brain regions are lower than in male rodents. Here, we examined SPS as an appropriate model to elicit many PTSD-associated symptoms in females and whether intranasal NPY at higher doses than with males is able to alter the development of SPS-triggered behavioral impairments. Sprague-Dawley female rats were exposed to SPS only, or in a separate cohort after SPS stressors were immediately infused intranasally with one of several doses of NPY, starting with 600 µg/rat-four times the dose effective in males. In the third cohort of animals, females were infused intranasally with either 600 µg NPY, omarigliptin [a dipeptidyl peptidase IV (DPP4) inhibitor], or both right after the SPS stressors. After 19 days they were tested on several behavioral tests. SPS elicited significant depressive/despair like behavior on the forced swim test (FST), anxiety behavior on the elevated plus maze (EPM), as well as impaired social interaction. On the FST, there was a dose-response effect of intranasal NPY, with 1,200 µg, but not 600 µg, preventing the development of the SPS-elicited depressive-like behavior. The omarigliptin and 600 µg NPY combined treatment, but neither alone, was also sufficient at preventing depressive-like behavior on the FST. The results demonstrate that: (1) SPS elicits several behavioral manifestations of PTSD in females; (2) early intervention with a high dose of intranasal NPY has therapeutic potential also for females; and (3) NPY cleavage by DPP4 may play a role in the higher dose requirement for females.

2.
JBMR Plus ; 5(9): e10525, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34532613

RESUMO

Fracture repair is a normal physiological response to bone injury. During the process of bony callus formation, a lacunocanalicular network (LCN) is formed de novo that evolves with callus remodeling. Our aim was the longitudinal assessment of the development and evolution of the LCN during fracture repair. To this end, 45 adult wild-type C57BL/6 mice underwent closed tibial fracture surgery. Fractured and intact contralateral tibias were harvested after 2, 3, and 6 weeks of bone healing (n = 15/group). High-resolution micro-computed tomography (µCT) and deconvolution microscopy (DV) approaches were applied to quantify lacunar number density from the calluses and intact bone. On histological sections, Goldner's trichrome staining was used to assess lacunar occupancy, fluorescein isothiocyanate staining to visualize the canalicular network, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL) staining to examine osteocyte apoptosis. Analysis of µCT scans showed progressive decreases in mean lacuna volume over time (-27% 2-3 weeks; -13% 3-6 weeks). Lacunar number density increased considerably between 2 and 3 weeks (+156%). Correlation analysis was performed, showing a positive linear relationship between canalicular number density and trabecular thickness (R 2 = 0.56, p < 0.001) and an inverse relationship between mean lacuna volume and trabecular thickness (R 2 = 0.57, p < 0.001). Histology showed increases in canalicular number density over time (+22% 2-3 weeks, +51% 3-6 weeks). Lacunar occupancy in new bone of the callus was high (>90%), but the old cortical bone within the fracture site appeared necrotic as it underwent resorption. In conclusion, our data shows a progressive increase in the complexity of the LCN over time during fracture healing and demonstrates that this network is initiated during the early stages of repair. Further studies are needed to address the functional importance of osteocytes in bone healing, particularly in detecting and translating the effects of micromotion in the fracture. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

3.
J Orthop Res ; 38(9): 2065-2073, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32009241

RESUMO

Infection of orthopedic implants is a growing clinical challenge to manage due to the proliferation of drug-resistant bacterial strains. In this study, we aimed to investigate whether the treatment of implants with ceragenin-90 (CSA-90), a synthetic compound based on endogenous antibacterial peptides, could prevent infection in a novel rat model of periprosthetic joint infection (PJI) challenged with either local or systemic Staphylococcus aureus. A novel preclinical model of PJI was created using press-fit porous titanium implants in the distal femur of male Wistar rats. Sterile implants were pre-treated with 500 µg CSA-90 in saline. S. aureus was applied either directly at the time of surgery or administered via tail vein injection immediately afterward. Animals were monitored daily for clinical and radiographic evidence of infection for a total of 6 weeks. Post-study microbiological, radiographic, and histological analysis were performed to determine the incidence of PJI and assess osseointegration. CSA-90 treated groups demonstrated a reduced rate of PJI as confirmed by deep tissue swab culture at the time of cull compared with untreated groups with both local (33% vs 100%; P = .009) and systemic (10% vs 90%; P < .0001) S. aureus inoculation. Median survival time also increased from 8 to 17 days and from 8 to 42 days, respectively. In conclusion, this study describes a novel preclinical model of local and hematogenous PJI using a porous metal implant. CSA-90 reduced the incidence of PJI in this model supporting its further development as an antimicrobial coating for orthopedic implants.


Assuntos
Artrite Infecciosa/prevenção & controle , Pregnanos/administração & dosagem , Propilaminas/administração & dosagem , Infecções Relacionadas à Prótese/prevenção & controle , Infecções Estafilocócicas/prevenção & controle , Animais , Artrite Infecciosa/etiologia , Reabsorção Óssea/diagnóstico por imagem , Masculino , Osseointegração/efeitos dos fármacos , Flebotomia/efeitos adversos , Infecções Relacionadas à Prótese/etiologia , Ratos Wistar , Staphylococcus aureus/isolamento & purificação , Microtomografia por Raio-X
4.
Mol Ther Methods Clin Dev ; 15: 101-111, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31649959

RESUMO

A panel of 18 recombinant adeno-associated virus (rAAV) variants, both natural and engineered, constitutively expressing Cre recombinase under the cytomegalovirus early enhancer/chicken ß actin (CAG) promoter, were screened for their ability to transduce bone in Ai9 fluorescent reporter mice. Transgenic Cre-induced tdTomato expression served as a measure of transduction efficiency and alkaline phosphatase (AP) activity as an osteoblastic marker. Single injections of AAV8, AAV9, and AAV-DJ into midshaft tibial fractures yielded robust tdTomato expression in the callus. Next, the bone cell-specific promoters Sp7 and Col2.3 were tested to restrict Cre expression in an alternate model of systemic delivery by intravenous injection. Although CAG promoter constructs packaged into AAV8 produced high levels of tdTomato in the bone, liver, heart, spleen, and kidney, bone-specific promoter constructs restricted Cre expression to osseous tissues. AAV variants were further tested in vitro in a human osteoblast cell line (hFOB1.19), measuring GFP reporter expression by flow cytometry after 72 h. AAV2, AAV5, and AAV-DJ showed the highest transduction efficiency. In summary, we produced AAV vectors for selective and high-efficiency in vivo gene delivery to murine bone. The AAV8-Sp7-Cre vector has significant practical applications for inducing gene deletion postnatally in floxed mouse models.

5.
Calcif Tissue Int ; 104(4): 426-436, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30535573

RESUMO

Bone marrow transplantation (BMT) of healthy donor cells has been postulated as a strategy for treating osteogenesis imperfecta (OI) and other bone fragility disorders. The effect of engraftment by tail vein injection and/or marrow ablation by 6 Gy whole body irradiation were tested in Col1a2+/G610C (OI) mice as a model of mild-moderate OI. Dual-emission X-ray absorptiometry, microCT, and 4-point bending were used to measure bone volume (BV), bone mineral density (BMD), and biomechanical strength. BV, BMD, and mechanical strength were reduced in OI mice compared to wild type (WT) controls. BMT with and without irradiation yielded no difference in BV and BMD outcomes for both OI and WT mice, at 3 weeks. Transplantation of OI cells into OI mice to test for paracrine effects of BMT also showed no difference with non-transplanted OI mice. In a parallel cell tracking study, donor marrow was taken from transgenic mice constitutively expressing tdTomato and transplanted into WT mice. Lineage tracking demonstrated that irradiation considerably enhanced engraftment of tdTomato+ cells. However, tdTomato+ cells predominantly expressed TRAP and not AP, indicating engrafted donor cells were chiefly from the hematopoietic lineages. These data show that whole marrow transplantation fails to rescue the bone phenotype of Col1a2+/G610C (OI) mice and that osteopoietic engraftment is not significantly enhanced by irradiation. These findings are highly relevant to modern approaches focused on the gene repair of patient cells ex vivo and their subsequent reintroduction into the osteopoietic compartment via the circulation.


Assuntos
Transplante de Medula Óssea , Osso e Ossos/metabolismo , Osteogênese Imperfeita/terapia , Osteogênese/fisiologia , Animais , Densidade Óssea/fisiologia , Transplante de Medula Óssea/métodos , Modelos Animais de Doenças , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Osteogênese Imperfeita/genética
6.
Clin Orthop Relat Res ; 476(6): 1311-1323, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29698291

RESUMO

BACKGROUND: Infection of open fractures remains a significant cause of morbidity and mortality to patients worldwide. Early administration of prophylactic antibiotics is known to improve outcomes; however, increasing concern regarding antimicrobial resistance makes finding new compounds for use in such cases a pressing area for further research. CSA-90, a synthetic peptidomimetic compound, has previously demonstrated promising antimicrobial action against Staphylococcus aureus in rat open fractures. However, its efficacy against antibiotic-resistant microorganisms, its potential as a therapeutic agent in addition to its prophylactic effects, and its proosteogenic properties all require further investigation. QUESTIONS/PURPOSES: (1) Does prophylactic treatment with CSA-90 reduce infection rates in a rat open fracture model inoculated with S aureus, methicillin-resistant S aureus (MRSA), and methicillin-resistant Staphylococcus epidermidis (MRSE) as measured by survival, radiographic union, and deep tissue swab cultures? (2) Does CSA-90 reduce infection rates when administered later in the management of an open fracture as measured by survival, radiographic union, and deep tissue swab cultures? (3) Does CSA-90 demonstrate a synergistic proosteogenic effect with bone morphogenetic protein 2 (BMP-2) in a noninfected rat ectopic bone formation assay as assessed by micro-CT bone volume measurement? (4) Can CSA-90 elute and retain its antimicrobial efficacy in vitro when delivered using clinically relevant agents measured using a Kirby-Bauer disc diffusion assay? METHODS: All in vivo studies were approved by the local animal ethics committee. In the open fracture studies, 12-week-old male Wistar rats underwent open midshaft femoral fractures stabilized with a 1.1-mm Kirschner wire and 10 µg BMP-2 ± 500 µg CSA-90 was applied to the fracture site using a collagen sponge along with 1 x 10 colony-forming units of bacteria (S aureus/MRSA/MRSE; n = 10 per group). In the delayed treatment study, débridement and treatment with 500 µg CSA-90 were performed at Day 1 and Day 5 after injury and bacterial insult (S aureus). All animals were reviewed daily for signs of local infection and/or sepsis. An independent, blinded veterinarian reviewed twice-weekly radiographs, and rats showing osteolysis and/or declining overall health were culled at his instruction. The primary outcome of both fracture studies was fracture infection, incorporating survival, radiographic union, and deep tissue swab cultures. For the ectopic bone formation assay, 0 to 10 µg BMP-2 and 0 to 500 µg CSA-90 were delivered on a collagen sponge into bilateral quadriceps muscle pouches of 8-week-old rats (n = 10 per group). Micro-CT quantification of bone volume and descriptive histologic analysis were performed for all in vivo studies. Modified Kirby-Bauer disc diffusion assays were used to quantify antimicrobial activity in vitro using four different delivery methods, including bone cement. RESULTS: Infection was observed in none of the MRSA inoculated open fractures treated with CSA-90 with 10 of 10 deep tissue swab cultures negative at the time of cull. Median survival was 43 days (range, 11-43 days) in the treated group versus 11 days (range, 8-11 days) in the untreated MRSA inoculated group (p < 0.001). However, delayed débridement and treatment of open fractures with CSA-90 at either Day 1 or Day 5 did not prevent infection, resulting in early culls by Day 21 with positive swab cultures (10 of 10 for each time point). Maximal ectopic bone formation was achieved with 500 µg CSA-90 and 10 µg BMP-2 (mean volume, 9.58 mm; SD, 7.83), creating larger bone nodules than formed with 250 µg CSA-90 and 10 µg BMP-2 (mean volume, 1.7 mm; SD, 1.07; p < 0.001). Disc diffusion assays showed that CSA-90 could successfully elute from four potential delivery agents including calcium sulphate (mean zone of inhibition, 11.35 mm; SD, 0.957) and bone cement (mean, 4.67 mm; SD, 0.516). CONCLUSIONS: CSA-90 shows antimicrobial action against antibiotic-resistant Staphylococcal strains in vitro and in an in vivo model of open fracture infection. CLINICAL RELEVANCE: The antimicrobial properties of CSA-90 combined with further evidence of its proosteogenic potential make it a promising compound to develop further for orthopaedic applications.


Assuntos
Antibioticoprofilaxia/métodos , Fraturas do Fêmur/tratamento farmacológico , Fraturas Expostas/tratamento farmacológico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Pregnanos/farmacologia , Propilaminas/farmacologia , Infecções Estafilocócicas/prevenção & controle , Animais , Modelos Animais de Doenças , Fraturas do Fêmur/microbiologia , Fraturas Expostas/microbiologia , Masculino , Ratos , Ratos Wistar , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/efeitos dos fármacos
7.
Mol Genet Metab ; 123(4): 518-525, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29477258

RESUMO

Neurofibromatosis Type 1 (NF1) is a common autosomal dominant genetic disorder While NF1 is primarily associated with predisposition for tumor formation, muscle weakness has emerged as having a significant impact on quality of life. NF1 inactivation is linked with a canonical upregulation Ras-MEK-ERK signaling. This in this study we tested the capacity of the small molecule MEK inhibitor PD0325901 to influence the intramyocellular lipid accumulation associated with NF1 deficiency. Established murine models of tissue specific Nf1 deletion in skeletal muscle (Nf1MyoD-/-) and limb mesenchyme (Nf1Prx1-/-) were tested. Developmental PD0325901 dosing of dams pregnant with Nf1MyoD-/- progeny rescued the phenotype of day 3 pups including body weight and lipid accumulation by Oil Red O staining. In contrast, PD0325901 treatment of 4 week old Nf1Prx1-/- mice for 8 weeks had no impact on body weight, muscle wet weight, activity, or intramyocellular lipid. Examination of day 3 Nf1Prx1-/- pups showed differences between the two tissue-specific knockout strains, with lipid staining greatest in Nf1MyoD-/- mice, and fibrosis higher in Nf1Prx1-/- mice. These data show that a MEK/ERK dependent mechanism underlies NF1 muscle metabolism during development. However, crosstalk from Nf1-deficient non-muscle mesenchymal cells may impact upon muscle metabolism and fibrosis in neonatal and mature myofibers.


Assuntos
Benzamidas/farmacologia , Difenilamina/análogos & derivados , Extremidades/patologia , Músculo Esquelético/patologia , Doenças Musculares/prevenção & controle , Neurofibromatose 1/fisiopatologia , Neurofibromina 1/fisiologia , Animais , Animais Recém-Nascidos , Difenilamina/farmacologia , Feminino , Proteínas de Homeodomínio/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Proteína MyoD/fisiologia , Transdução de Sinais , Proteínas ras/antagonistas & inibidores , Proteínas ras/metabolismo
8.
J Orthop Res ; 36(4): 1106-1113, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28884841

RESUMO

Neutralizing monoclonal sclerostin antibodies are effective in promoting bone formation at a systemic level and in orthopedic scenarios including closed fracture repair. In this study we examined the effects of sclerostin antibody (Scl-Ab) treatment on regenerate volume, density, and strength in a rat model of distraction osteogenesis. Surgical osteotomy was performed on 179 Sprague Dawley rats. After 1 week, rats underwent distraction for 2 weeks, followed by 6 weeks for consolidation. Two treatment groups received biweekly subcutaneous Scl-AbIII (a rodent form of Scl-Ab; 25 mg/kg), either from the start of distraction onward or restricted to the consolidation phase. These groups were compared to controls receiving saline. Measurement modalities included longitudinal DXA, ex vivo QCT, and microCT, tissue histology, and biomechanical four-point bending tests. Bone volume was increased in both Scl-Ab treatments regimens by the end of consolidation (+26-38%, p < 0.05), as assessed by microCT. This was associated with increased mineral apposition. Importantly, Scl-Ab led to increased strength in united bones, and this reached statistical significance in animals receiving Scl-Ab during consolidation only (+177%, p < 0.01, maximum load to failure). These data demonstrate that Scl-Ab treatment increases bone formation, leading to regenerates with higher bone volume and improved strength. Our data also suggest that the optimal effects of Scl-Ab treatment are achieved in the latter stages of distraction osteogenesis. These findings support further investigation into the potential clinical application of sclerostin antibody to augment bone distraction, such as limb lengthening, particularly in the prevention of refracture. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1106-1113, 2018.


Assuntos
Anticorpos Neutralizantes/uso terapêutico , Proteínas Morfogenéticas Ósseas/imunologia , Regeneração Óssea/efeitos dos fármacos , Marcadores Genéticos/imunologia , Osteogênese por Distração , Osteogênese/efeitos dos fármacos , Animais , Anticorpos Neutralizantes/farmacologia , Calcificação Fisiológica/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Fêmur/cirurgia , Masculino , Osteotomia , Ratos Sprague-Dawley , Suporte de Carga
9.
Hum Mol Genet ; 27(4): 577-588, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29228356

RESUMO

Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder with complex symptomology. In addition to a predisposition to tumors, children with NF1 can present with reduced muscle mass, global muscle weakness, and impaired motor skills, which can have a significant impact on quality of life. Genetic mouse models have shown a lipid storage disease phenotype may underlie muscle weakness in NF1. Herein we confirm that biopsy specimens from six individuals with NF1 similarly manifest features of a lipid storage myopathy, with marked accumulation of intramyocellular lipid, fibrosis, and mononuclear cell infiltrates. Intramyocellular lipid was also correlated with reductions in neurofibromin protein expression by western analysis. An RNASeq profile of Nf1null muscle from a muscle-specific Nf1 knockout mouse (Nf1MyoD-/-) revealed alterations in genes associated with glucose regulation and cell signaling. Comparison by lipid mass spectrometry demonstrated that Nf1null muscle specimens were enriched for long chain fatty acid (LCFA) containing neutral lipids, such as cholesterol esters and triacylglycerides, suggesting fundamentally impaired LCFA metabolism. The subsequent generation of a limb-specific Nf1 knockout mouse (Nf1Prx1-/-) recapitulated all observed features of human NF1 myopathy, including lipid storage, fibrosis, and muscle weakness. Collectively, these insights led to the evaluation of a dietary intervention of reduced LCFAs, and enrichment of medium-chain fatty acids (MCFAs) with L-carnitine. Following 8-weeks of dietary treatment, Nf1Prx1-/- mice showed a 45% increase in maximal grip strength, and a 71% reduction in intramyocellular lipid staining compared with littermates fed standard chow. These data link NF1 deficiency to fundamental shifts in muscle metabolism, and provide strong proof of principal that a dietary intervention can ameliorate symptoms.


Assuntos
Doenças Musculares/dietoterapia , Neurofibromatose 1/dietoterapia , Adolescente , Adulto , Animais , Carnitina/uso terapêutico , Criança , Pré-Escolar , Ácidos Graxos/uso terapêutico , Feminino , Humanos , Metabolismo dos Lipídeos/fisiologia , Masculino , Espectrometria de Massas , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Debilidade Muscular/patologia , Debilidade Muscular/terapia , Doenças Musculares/genética , Doenças Musculares/patologia , Neurofibromatose 1/genética , Neurofibromatose 1/patologia , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Qualidade de Vida , Adulto Jovem
10.
Calcif Tissue Int ; 102(1): 105-116, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29105022

RESUMO

Wnt antagonist Dkk1 is a negative regulator of bone formation and Dkk1 +/- heterozygous mice display a high bone mass phenotype. Complete loss of Dkk1 function disrupts embryonic head development. Homozygous Dkk1 -/- mice that were heterozygous for Wnt3 loss of function mutation (termed Dkk1 KO) are viable and allowed studying the effects of homozygous inactivation of Dkk1 on bone formation. Dkk1 KO mice showed a high bone mass phenotype exceeding that of heterozygous mice as well as a high incidence of polydactyly and kinky tails. Whole body bone density was increased in the Dkk1 KO mice as shown by longitudinal dual-energy X-ray absorptiometry. MicroCT analysis of the distal femur revealed up to 3-fold increases in trabecular bone volume and up to 2-fold increases in the vertebrae, compared to wild type controls. Cortical bone was increased in both the tibiae and vertebrae, which correlated with increased strength in tibial 4-point bending and vertebral compression tests. Dynamic histomorphometry identified increased bone formation as the mechanism underlying the high bone mass phenotype in Dkk1 KO mice, with no changes in bone resorption. Mice featuring only Wnt3 heterozygosity showed no evident bone phenotype. Our findings highlight a critical role for Dkk1 in the regulation of bone formation and a gene dose-dependent response to loss of DKK1 function. Targeting Dkk1 to enhance bone formation offers therapeutic potential for osteoporosis.


Assuntos
Densidade Óssea/fisiologia , Osso e Ossos/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Osteogênese/genética , Animais , Doenças Ósseas Metabólicas/metabolismo , Reabsorção Óssea/metabolismo , Osso e Ossos/patologia , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos Knockout , Fenótipo
11.
J Orthop Res ; 36(3): 930-936, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28767180

RESUMO

Tibial pseudarthrosis associated with Neurofibromatosis type 1 (NF1) is an orthopedic condition with consistently poor clinical outcomes. Using a murine model that features localized double inactivation of the Nf1 gene in an experimental tibial fracture, we tested the effects of recombinant human bone morphogenetic protein-2 (rhBMP-2) and/or the bisphosphonate zoledronic acid (ZA). Tibiae were harvested at 3 weeks for analysis, at which time there was negligible healing in un-treated control fractures (7% union). In contrast, rhBMP-2 and rhBMP-2/ZA groups showed significantly greater union (87% and 93%, p < 0.01 for both). Treatment with rhBMP-2 led to a 12-fold increase in callus bone volume and this was further increased in the rhBMP-2/ZA group. Mechanical testing of the healed rhBMP-2 and rhBMP-2/ZA fractures showed that the latter group had significantly higher mechanical strength and was restored to that of the un-fractured contralateral leg. Co-treatment with rhBMP-2/ZA also reduced fibrous tissue infiltration at the fracture site compared to rhBMP alone (p = 0.068). These data support the future clinical investigation of this combination of anabolic and anti-resorptive agents for the treatment of NF1 pseudarthrosis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:930-936, 2018.


Assuntos
Conservadores da Densidade Óssea/uso terapêutico , Proteína Morfogenética Óssea 2/uso terapêutico , Neurofibromatose 1/complicações , Pseudoartrose/genética , Fator de Crescimento Transformador beta/uso terapêutico , Ácido Zoledrônico/uso terapêutico , Animais , Conservadores da Densidade Óssea/farmacologia , Proteína Morfogenética Óssea 2/farmacologia , Calo Ósseo/efeitos dos fármacos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Quimioterapia Combinada , Feminino , Genes da Neurofibromatose 1 , Camundongos , Pseudoartrose/tratamento farmacológico , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Fator de Crescimento Transformador beta/farmacologia , Ácido Zoledrônico/farmacologia
12.
Int J Dev Biol ; 61(8-9): 531-536, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29139538

RESUMO

Neurofibromatosis Type 1 (NF1) is an autosomal dominant genetic disorder that results in a variety of characteristic manifestations. Prior studies have shown reduced muscle size and global skeletal muscle weakness in children with NF1. This associated weakness can lead to significant challenges impacting on quality of life. Pre-clinical studies using a muscle-specific NF1 knockout mouse have linked this weakness to an underlying primary metabolic deficiency in the muscle. However, the neonatal lethality of this strain prevents analysis of the role of NF1 in adult muscle. In this study, we present the characterization of an inducible muscle-specific NF1 knockout strain (Nf1Pax7i f/f ) produced by cross breeding the Pax7-CreERT2 strain with the conditional Nf1flox/flox line. Tamoxifen dosing of 8-week old Nf1Pax7i f/f mice led to recombination of the floxed allele in muscle, as detected by PCR. Detailed phenotypic analysis of treated adult mice over 8 weeks revealed no changes in bodyweight or muscle weight, no histological signs of myopathy, and no functional evidence of distress or impairment. Subsequent analysis using the Ai9 Cre-dependent tdTomato reporter strain was used to analyse labelling in embryos and in adult mice. Cell tracking studies identified a lower than expected rate of integration of recombined satellite cells into adult muscle. In contrast, a high persistent contribution of embryonic cells that were Pax7+ were found in adult muscle. These findings indicate important caveats with the use of the Pax7-CreER T2 strain and highlight a need to develop new tools for investigating the function of NF1 in mature muscle.


Assuntos
Linhagem da Célula , Desenvolvimento Muscular/fisiologia , Doenças Musculares/etiologia , Neurofibromina 1/fisiologia , Fator de Transcrição PAX7/fisiologia , Transgenes/fisiologia , Animais , Feminino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Desenvolvimento Muscular/efeitos dos fármacos , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tamoxifeno/farmacologia
13.
Bone ; 101: 96-103, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28461254

RESUMO

In this study, we examined the therapeutic potential of anti-Sclerostin Antibody (Scl-Ab) and bisphosphonate treatments for the bone fragility disorder Osteogenesis Imperfecta (OI). Mice with the Amish OI mutation (Col1a2 G610C mice) and control wild type littermates (WT) were treated from week 5 to week 9 of life with (1) saline (control), (2) zoledronic acid given 0.025mg/kg s.c. weekly (ZA), (3) Scl-Ab given 50mg/kg IV weekly (Scl-Ab), or (4) a combination of both (Scl-Ab/ZA). Functional outcomes were prioritized and included bone mineral density (BMD), bone microarchitecture, long bone bending strength, and vertebral compression strength. By dual-energy absorptiometry, Scl-Ab treatment alone had no effect on tibial BMD, while ZA and Scl-Ab/ZA significantly enhanced BMD by week 4 (+16% and +27% respectively, P<0.05). Scl-Ab/ZA treatment also led to increases in cortical thickness and tissue mineral density, and restored the tibial 4-point bending strength to that of control WT mice. In the spine, all treatments increased compression strength over controls, but only the combined group reached the strength of WT controls. Scl-Ab showed greater anabolic effects in the trabecular bone than in cortical bone. In summary, the Scl-Ab/ZA intervention was superior to either treatment alone in this OI mouse model, however further studies are required to establish its efficacy in other preclinical and clinical scenarios.


Assuntos
Anticorpos/uso terapêutico , Difosfonatos/uso terapêutico , Glicoproteínas/imunologia , Imidazóis/uso terapêutico , Osteogênese Imperfeita/tratamento farmacológico , Proteínas Adaptadoras de Transdução de Sinal , Animais , Anticorpos/imunologia , Densidade Óssea/efeitos dos fármacos , Densidade Óssea/fisiologia , Modelos Animais de Doenças , Feminino , Glicoproteínas/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Osteogênese Imperfeita/fisiopatologia , Ácido Zoledrônico
14.
Biomacromolecules ; 18(6): 1736-1746, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28535038

RESUMO

Biodegradable polymers are appealing material for the manufacturing of surgical implants as such implants break down in vivo, negating the need for a subsequent operation for removal. Many biocompatible polymers produce acidic breakdown products that can lead to localized inflammation and osteolysis. This study assesses the feasibility of fabricating implants out of poly(propylene carbonate) (PPC)-starch that degrades into CO2 and water. The basic compression modulus of PPC-starch (1:1 w/w) is 34 MPa; however, the addition of glycerol (1% w/w) and water as plasticizers doubles this value and enhances the surface wettability. The bioactivity and stiffness of PPC-starch blends is increased by the addition of bioglass microparticles (10% w/w) as shown by in vitro osteoblast differentiation assay and mechanical testing. MicroCT analysis confirms that the bioglass microparticles are evenly distributed throughout biomaterial. PPC-starch-bioglass was tested in vivo in two animal models. A murine subcutaneous pellet degradation assay demonstrates that the PPC-starch-bioglass blend's volume fraction loss is 46% after 6 months postsurgery, while it is 27% for poly(lactic acid). In a rat knee implantation model, PPC-starch-bioglass screws inserted into the distal femur show osseointegration with no localized adverse effects after 3 and 12 weeks. These data support the further development of PPC-starch-bioglass as a medical biomaterial.


Assuntos
Implantes Absorvíveis , Materiais Biocompatíveis/síntese química , Interface Osso-Implante/fisiologia , Cerâmica/farmacologia , Polipropilenos/síntese química , Amido/química , Animais , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/farmacologia , Interface Osso-Implante/anatomia & histologia , Interface Osso-Implante/diagnóstico por imagem , Dióxido de Carbono/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cerâmica/química , Feminino , Fêmur/cirurgia , Glicerol/química , Glicerol/metabolismo , Humanos , Hidrólise , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Polipropilenos/metabolismo , Polipropilenos/farmacologia , Ratos , Amido/metabolismo , Água/metabolismo , Molhabilidade
15.
Calcif Tissue Int ; 101(2): 217-228, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28391431

RESUMO

Open fractures remain a challenge in orthopedics. Current strategies to intervene are often inadequate, particularly in severe fractures or when treatment is delayed. Sclerostin is a negative regulator of bone growth and sclerostin-neutralizing antibodies (Scl-Ab) can increase bone mass and strength. The application of these antibodies to improve orthopedic repair has shown varied results, and may be dependent on the location and severity of the bony injury. We examined Scl-Ab treatment within an established rat osteotomy model with periosteal stripping analogous to open fracture repair. In one study, Scl-Ab was given 25 mg/kg bi-weekly, either from the time of fracture or from 3 weeks post-fracture up to an end-point of 12 weeks. A second study treated only delayed union open fractures that did not show radiographic union by week 6 post-fracture. Outcome measures included radiographic union, microCT analysis of bone volume and architecture, and histology. In the first study, Scl-Ab given from either 0 or 3 weeks significantly improved callus bone volume (+52%, p < 0.05 and +58%, p < 0.01) at 12 weeks, as well as strength (+48%, p < 0.05 and +70%, p < 0.05). Despite these improvements, union rate was not changed. In the second study treating only established delayed fractures, bony callus volume was similarly increased by Scl-Ab treatment; however, this did not translate to increased biomechanical strength or union improvement. Sclerostin antibody treatment has limited effects on the healing of challenging open fractures with periosteal stripping, but shows the greatest benefits on callus size and strength with earlier intervention.


Assuntos
Anticorpos/farmacologia , Densidade Óssea/efeitos dos fármacos , Proteínas Morfogenéticas Ósseas/imunologia , Calo Ósseo/patologia , Marcadores Genéticos/imunologia , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Modelos Animais de Doenças , Fraturas do Fêmur/tratamento farmacológico , Fraturas do Fêmur/patologia , Fêmur/efeitos dos fármacos , Fêmur/patologia , Consolidação da Fratura/efeitos dos fármacos , Masculino , Osteogênese/efeitos dos fármacos , Osteotomia/métodos , Ratos
16.
J Biomed Mater Res B Appl Biomater ; 105(1): 136-144, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26435360

RESUMO

Cathepsin K inhibitors (CKIs) are an emerging class of drugs that are potent antagonists of osteoclastic activity. We speculated that they may be beneficial in bone tissue engineering, where a stress shielded environment can lead to rapid resorption of new bone. Most CKIs require frequent dosing, so to achieve a sustained release we manufactured polymer nanoparticles encapsulating the CKI L006235 (CKI/nP). CKI/nP and the collagen matrices that were used to deliver them were characterized by electron microscopy and fluorescent confocal microscopy, and data indicated that the particles were evenly distributed throughout the collagen. Elution studies indicated a linear release of the inhibitor from the CKI/nP, with approximately 2% of the drug being released per day. In an in vivo study, mice were implanted with collagen scaffolds containing rhBMP-2 that were loaded with the CKI/nP. Measurement of bone volume (BV) by microCT showed no significant increase with CKI/nP incorporation, and other parameters similarly showed no statistical differences. Cell culture studies confirmed the activity of the drug, even at low concentrations. These data indicate that polymer nanoparticles are an effective method for sustained drug delivery of a CKI, however, this may not be readily translatable to substantively improved bone tissue engineering outcomes. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 136-144, 2017.


Assuntos
Benzamidas , Proteína Morfogenética Óssea 2 , Catepsina K/antagonistas & inibidores , Sistemas de Liberação de Medicamentos/métodos , Nanosferas/química , Osteoclastos/metabolismo , Poliglactina 910 , Tiazóis , Animais , Benzamidas/química , Benzamidas/farmacologia , Proteína Morfogenética Óssea 2/química , Proteína Morfogenética Óssea 2/farmacologia , Humanos , Camundongos , Poliglactina 910/química , Poliglactina 910/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Tiazóis/química , Tiazóis/farmacologia
17.
J Orthop Res ; 34(2): 320-30, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26185108

RESUMO

ACE-011 is a bone anabolic agent generated by fusing the extracellular domain of the Activin Type 2A receptor (ActRIIA) to an IgG-Fc. The orthopedic utility of ACE-011 was investigated using a murine analogue, RAP-011. Initially, a rat closed fracture model was tested using bi-weekly (biw) 10 mg/kg RAP-011. RAP-011 significantly increased callus length and callus bone volume (BV, +43% at 6w, p < 0.01). The polar moment of inertia was calculated to be substantively increased (+80%, p < 0.01), however mechanical bending tests showed a more modest increase in maximum load to failure (+24%, p < 0.05). Histology indicated enhanced appositional bone growth, but it was hypothesized that reduced remodeling, evidenced by decreased serum CTX (-16% at 6w, p < 0.01), could be compromising bone quality in the callus. A second closed fracture study was performed to examine lower "pulse" [RAP-011(p)] and "sustained" [RAP-011(s)] regimens of biw 0.6mg/kg × 2, 0.35mg/kg × 3 and 0.18mg/kg × 2, 0.1mg/kg × 7 respectively, compared with PTH(1-34) (25 µg/kg/d) and vehicle controls. RAP-011 treatments gave modest increases in callus length and callus BV at 6w (p < 0.01), but did not achieve an increase in maximum load over vehicle. In summary, RAP-011 is effective in promoting bone formation during repair, but optimizing callus bone quality will require further investigation.


Assuntos
Fraturas Ósseas/tratamento farmacológico , Proteínas Recombinantes de Fusão/uso terapêutico , Animais , Fenômenos Biomecânicos , Calo Ósseo/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Masculino , Ratos Wistar , Proteínas Recombinantes de Fusão/farmacologia
18.
J Bone Joint Surg Am ; 97(4): 302-9, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25695982

RESUMO

BACKGROUND: Treatment of infected open fractures remains a major clinical challenge. In this study, we investigated the novel broad-spectrum antibiotic CSA-90 (cationic steroid antibiotic-90) as an antimicrobial agent. METHODS: CSA-90 was screened in an osteoblast cell culture model for effects on differentiation and mineralization. Local delivery of CSA-90 was then tested alone and in combination with recombinant human bone morphogenetic protein-2 (rhBMP-2) in a mouse ectopic bone formation model (n=40 mice) and in a rat open fracture model inoculated with pathogenic Staphylococcus aureus (n=84 rats). RESULTS: CSA-90 enhanced matrix mineralization in cultured osteoblasts and increased rhBMP-2-induced bone formation in vivo. All animals in which an open fracture had been inoculated with Staphylococcus aureus and not treated with local CSA-90, including those treated with rhBMP-2, had to be culled prior to the experimental end point (six weeks) because of localized osteolysis and deterioration of overall health, whereas CSA-90 prevented establishment of infection in all open fractures in which it was used (p≤0.012). Increased union rates were seen for the fractures treated with rhBMP-2 or with the combination of rhBMP-2 and CSA-90 compared with that observed for the fractures treated with CSA-90 alone (p=0.04). CONCLUSIONS: CSA-90 can promote osteogenesis and be used for prevention of Staphylococcus aureus infection in preclinical models. CLINICAL RELEVANCE: Local delivery of CSA-90 represents a novel strategy for prevention of infection and may have specific benefits in the context of orthopaedic injuries.


Assuntos
Antibacterianos/administração & dosagem , Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Fraturas do Fêmur/complicações , Consolidação da Fratura/efeitos dos fármacos , Fraturas Expostas/complicações , Osteíte/tratamento farmacológico , Pregnanos/administração & dosagem , Propilaminas/administração & dosagem , Infecções Estafilocócicas/tratamento farmacológico , Análise de Variância , Animais , Proteínas Morfogenéticas Ósseas/administração & dosagem , Calcificação Fisiológica/efeitos dos fármacos , Células Cultivadas , Coristoma/tratamento farmacológico , Coristoma/patologia , Modelos Animais de Doenças , Feminino , Fraturas do Fêmur/diagnóstico por imagem , Fraturas Expostas/diagnóstico por imagem , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Osteíte/microbiologia , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Radiografia , Ratos , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus
19.
J Bone Miner Res ; 30(6): 1022-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25484198

RESUMO

Bisphosphonates (BP) are antiresorptive drugs with a high affinity for bone. Despite the therapeutic success in treating osteoporosis and metabolic bone diseases, chronic BP usage has been associated with reduced repair of microdamage and atypical femoral fracture (AFF). The latter has a poor prognosis, and although anabolic interventions such as teriparatide (PTH(1-34) ) have been suggested as treatment options, there is a limited evidence base in support of their efficacy. Because PTH(1-34) acts to increase bone turnover, we hypothesized that it may be able to increase BP in turnover in the skeleton, which, in turn, may improve bone healing. To test this, we employed a mixture of fluorescent Alexa647-labelled pamidronate (Pam) and radiolabeled (14) C-ZA (zoledronic acid). These traceable BPs were dosed to Wistar rats in models of normal growth and closed fracture repair. Rats were cotreated with saline or 25 µg/kg/d PTH(1-34) , and the effects on BP liberation and bone healing were examined by X-ray, micro-CT, autoradiography, and fluorescent confocal microscopy. Consistent with increased BP remobilization with PTH(1-34) , there was a significant decrease in fluorescence in both the long bones and in the fracture callus in treated animals compared with controls. This was further confirmed by autoradiography for (14) C-ZA. In this model of acute BP treatment, callus bone volume (BV) was significantly increased in fractured limbs, and although we noted significant decreases in callus-bound BP with PTH(1-34) , these were not sufficient to alter this BV. However, increased intracellular BP was noted in resorbing osteoclasts, confirming that, in principle, PTH(1-34) increases bone turnover as well as BP turnover.


Assuntos
Difosfonatos , Fraturas do Fêmur , Consolidação da Fratura/efeitos dos fármacos , Imidazóis , Hormônio Paratireóideo , Animais , Isótopos de Carbono/farmacocinética , Isótopos de Carbono/farmacologia , Difosfonatos/farmacocinética , Difosfonatos/farmacologia , Fraturas do Fêmur/tratamento farmacológico , Fraturas do Fêmur/metabolismo , Imidazóis/farmacocinética , Imidazóis/farmacologia , Marcação por Isótopo , Masculino , Pamidronato , Hormônio Paratireóideo/farmacocinética , Hormônio Paratireóideo/farmacologia , Ratos , Ratos Wistar , Ácido Zoledrônico
20.
J Orthop Res ; 32(12): 1549-56, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25224138

RESUMO

Activated Protein C (APC) is an anticoagulant with strong cytoprotective properties that has been shown to promote wound healing. In this study APC was investigated for its potential orthopedic application using a Bone Morphogenetic Protein 2 (rhBMP-2) induced ectopic bone formation model. Local co-administration of 10 µg rhBMP-2 with 10 µg or 25 µg APC increased bone volume at 3 weeks by 32% (N.S.) and 74% (p<0.01) compared to rhBMP-2 alone. This was associated with a significant increase in CD31+ and TRAP+ cells in tissue sections of ectopic bone, consistent with enhanced vascularity and bone turnover. The actions of APC are largely mediated by its receptors endothelial protein C receptor (EPCR) and protease-activated receptors (PARs). Cultured pre-osteoblasts and bone nodule tissue sections were shown to express PAR1/2 and EPCR. When pre-osteoblasts were treated with APC, cell viability and phosphorylation of ERK1/2, Akt, and p38 were increased. Inhibition with PAR1 and sometimes PAR2 antagonists, but not with EPCR blocking antibodies, ameliorated the effects of APC on cell viability and kinase phosphorylation. These data indicate that APC can affect osteoblast viability and signaling, and may have in vivo applications with rhBMP-2 for bone repair.


Assuntos
Osso e Ossos/efeitos dos fármacos , Proteína C/farmacologia , Receptor PAR-1/fisiologia , Receptor PAR-2/fisiologia , Animais , Proteína Morfogenética Óssea 2/farmacologia , Reabsorção Óssea/prevenção & controle , Osso e Ossos/metabolismo , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Proteína C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...