Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Diabetes ; 15(5): 853-866, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38766427

RESUMO

Tuberculosis (TB) remains a leading cause of death among infectious diseases, particularly in poor countries. Viral infections, multidrug-resistant and ex-tensively drug-resistant TB strains, as well as the coexistence of chronic illnesses such as diabetes mellitus (DM) greatly aggravate TB morbidity and mortality. DM [particularly type 2 DM (T2DM)] and TB have converged making their control even more challenging. Two contemporary global epidemics, TB-DM behaves like a syndemic, a synergistic confluence of two highly prevalent diseases. T2DM is a risk factor for developing more severe forms of multi-drug resistant-TB and TB recurrence after preventive treatment. Since a bidirectional relationship exists between TB and DM, it is necessary to concurrently treat both, and promote recommendations for the joint management of both diseases. There are also some drug-drug interactions resulting in adverse treatment outcomes in TB-DM patients including treatment failure, and reinfection. In addition, autophagy may play a role in these comorbidities. Therefore, the TB-DM comorbidities present several health challenges, requiring a focus on multidisciplinary collaboration and integrated strategies, to effectively deal with this double burden. To effectively manage the comorbidity, further screening in affected countries, more suitable drugs, and better treatment strategies are required.

2.
Histol Histopathol ; 39(7): 853-866, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38465764

RESUMO

Autophagy is a prosurvival mechanism for the clearance of damaged cellular components, specifically upon exposure to various stressors. In lymphoid organs, excessive ethanol consumption increases lymphocyte apoptosis, resulting in immunosuppression. However, ethanol-induced autophagy and related phagocytosis of apoptotic lymphocytes in the spleen have not been studied yet. Adult male Wistar rats were injected intraperitoneally either with 5 g/kg ethanol or phosphate-buffered saline (as a control group) and then sacrificed 0, 3, 6, and 24 hours after injection. Light and transmission electron microscopy (TEM) findings indicated enhanced T cell apoptosis in the white pulps of ethanol-treated rats (ETRs) compared with the control group, which peaked at 6 h and was associated with the accumulation of tingible body macrophages (TBMs). These macrophages exhibited an upregulated autophagic response, as evidenced by enhanced LC3-II (a specific marker of autophagosomes) expression, which peaked at 24h. In addition, double labeling immunofluorescence of LC3-II with lysosomal markers revealed the enhanced formation of autolysosomes in TBMs of ETRs, which was associated with suppression of p62 immunostaining, indicating the enhanced autophagic flux. Interestingly, this elevated autophagic response in ETR TBMs was accompanied by evidence of LC3-associated phagocytosis (LAP) of apoptotic splenocytes. This is based on TUNEL/LC3-II double labeling and TEM observations of phagosomes containing apoptotic bodies, enclosed within phagosomal membranes adjacent to the autophagic vacuoles. It can be concluded that enhanced prosurvival autophagy in splenic TBMs of ETRs and clearing of apoptotic lymphocytes via LAP may contribute to preventing secondary necrosis and autoimmune diseases.


Assuntos
Apoptose , Autofagia , Etanol , Macrófagos , Fagocitose , Ratos Wistar , Baço , Animais , Autofagia/efeitos dos fármacos , Masculino , Fagocitose/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Etanol/toxicidade , Etanol/farmacologia , Baço/efeitos dos fármacos , Baço/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/ultraestrutura , Ratos , Linfócitos/efeitos dos fármacos , Microscopia Eletrônica de Transmissão
3.
Int J Mol Sci ; 24(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38069076

RESUMO

The development of novel screening tests aims to support early asymptomatic diagnosis and subtyping patients according to similar traits in the heterogeneous cancer cohort. Extracellular vesicles (EVs) are promising candidates for the detection of disease markers from bodily fluids, but limitations in the standardisation of isolation methods and the intrinsic EV heterogeneity obtained from liquid biopsies are currently obstacles to clinical adoption. Here, cellular responses to cancer EVs were initially explored as potential complementary biomarkers for stage separation using colorectal cancer (CRC) SW480 and SW620 cell line models. A pilot study on a small cohort of CRC patients and controls was then developed by performing a multivariate analysis of cellular responses to plasma-derived EVs. Several cell activities and markers involved in tumour microenvironment pathways were influenced by the treatment of cell line EVs in a stage-dependent manner. The multivariate analysis combining plasma EV markers and cellular responses to plasma EVs was able to separate patients according to disease stage. This preliminary study offers the potential of considering cellular responses to EVs in combination with EV biomarkers in the development of screening methods.


Assuntos
Neoplasias Colorretais , Vesículas Extracelulares , Humanos , Projetos Piloto , Biomarcadores Tumorais/metabolismo , Vesículas Extracelulares/metabolismo , Biópsia Líquida/métodos , Neoplasias Colorretais/patologia , Microambiente Tumoral
4.
Front Pharmacol ; 14: 1149809, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007026

RESUMO

Macroautophagy (hereafter referred to as autophagy), a highly conserved metabolic process, regulates cellular homeostasis by degrading dysfunctional cytosolic constituents and invading pathogens via the lysosomal system. In addition, autophagy selectively recycles specific organelles such as damaged mitochondria (via mitophagy), and lipid droplets (LDs; via lipophagy) or eliminates specialized intracellular pathogenic microorganisms such as hepatitis B virus (HBV) and coronaviruses (via virophagy). Selective autophagy, particularly mitophagy, plays a key role in the preservation of healthy liver physiology, and its dysfunction is connected to the pathogenesis of a wide variety of liver diseases. For example, lipophagy has emerged as a defensive mechanism against chronic liver diseases. There is a prominent role for mitophagy and lipophagy in hepatic pathologies including non-alcoholic fatty liver disease (NAFLD), hepatocellular carcinoma (HCC), and drug-induced liver injury. Moreover, these selective autophagy pathways including virophagy are being investigated in the context of viral hepatitis and, more recently, the coronavirus disease 2019 (COVID-19)-associated hepatic pathologies. The interplay between diverse types of selective autophagy and its impact on liver diseases is briefly addressed. Thus, modulating selective autophagy (e.g., mitophagy) would seem to be effective in improving liver diseases. Considering the prominence of selective autophagy in liver physiology, this review summarizes the current understanding of the molecular mechanisms and functions of selective autophagy (mainly mitophagy and lipophagy) in liver physiology and pathophysiology. This may help in finding therapeutic interventions targeting hepatic diseases via manipulation of selective autophagy.

5.
Cancers (Basel) ; 13(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205140

RESUMO

Transglutaminase-2 (TG2) is the most highly and ubiquitously expressed member of the transglutaminase enzyme family and is primarily involved in protein cross-linking. TG2 has been implicated in the development and progression of numerous cancers, with a direct role in multiple cellular processes and pathways linked to apoptosis, chemoresistance, epithelial-mesenchymal transition, and stem cell phenotype. The tumour microenvironment (TME) is critical in the formation, progression, and eventual metastasis of cancer, and increasing evidence points to a role for TG2 in matrix remodelling, modulation of biomechanical properties, cell adhesion, motility, and invasion. There is growing interest in targeting the TME therapeutically in response to advances in the understanding of its critical role in disease progression, and a number of approaches targeting biophysical properties and biomechanical signalling are beginning to show clinical promise. In this review we aim to highlight the wide array of processes in which TG2 influences the TME, focussing on its potential role in the dynamic tissue remodelling and biomechanical events increasingly linked to invasive and aggressive behaviour. Drug development efforts have yielded a range of TG2 inhibitors, and ongoing clinical trials may inform strategies for targeting the biomolecular and biomechanical function of TG2 in the TME.

6.
Cancers (Basel) ; 11(5)2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31117256

RESUMO

Colorectal cancer is the third most common cancer worldwide, and the fourth leading cause of malignancy-related mortality. This highlights the need to understand the processes driving this disease in order to develop new treatments and improve patient outcomes. A potential therapeutic target is the increased stiffness of the tumour microenvironment, which is linked to aggressive cancer cell behaviour by enhancing biomechanical signalling. In this study, we used an siRNA-based approach to investigate the contribution of the protein cross-linking enzyme transglutaminase-2 (TG2) to matrix remodelling and biomechanical properties of the tumour microenvironment. TG2 inhibited cancer cell growth in organotypic 3D fibroblast/SW480 co-culture models, and biomechanical analysis demonstrated that colorectal cancer cells induced fibroblast-mediated stiffness which was inhibited by silencing TG2. These biomechanical changes were associated with observed alterations to collagen fibre structure, notably fibre thickness. Our in vitro findings of collagen composition changes were also seen with imaging biopsied tissues from patients with colorectal cancer, with TG2 correlating positively with thicker collagen fibres, and associating with poor outcome as determined by disease recurrence post-surgery and overall survival. In conclusion, this study demonstrates a role for TG2 in the stromal response to invading tumour, leading to tissue stiffening and poor outcome in patients.

7.
Arthritis Res Ther ; 15(4): R76, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23883591

RESUMO

INTRODUCTION: The present study examined the effect of C-type natriuretic peptide (CNP) and biomechanical signals on anabolic and catabolic activities in chondrocyte/agarose constructs. METHODS: Natriuretic peptide (Npr) 2 and 3 expression were compared in non-diseased (grade 0/1) and diseased (grade IV) human cartilage by immunofluoresence microscopy and western blotting. In separate experiments, constructs were cultured under free-swelling conditions or subjected to dynamic compression with CNP, interleukin-1ß (IL-1ß), the Npr2 antagonist P19 or the Npr3 agonist cANF4⁻²³. Nitric oxide (NO) production, prostaglandin E2 (PGE2) release, glycosaminoglycan (GAG) synthesis and CNP concentration were quantified using biochemical assays. Gene expression of Npr2, Npr3, CNP, aggrecan and collagen type II were assessed by real-time qPCR. Two-way ANOVA and a post hoc Bonferroni-corrected t-test were used to analyse the data. RESULTS: The present study demonstrates increased expression of natriuretic peptide receptors in diseased or older cartilage (age 70) when compared to non-diseased tissue (age 60) which showed minimal expression. There was strong parallelism in the actions of CNP on cGMP induction resulting in enhanced GAG synthesis and reduction of NO and PGE2 release induced by IL-1ß. Inhibition of Npr2 with P19 maintained catabolic activities whilst specific agonism of Npr3 with cANF4⁻²³ had the opposite effect and reduced NO and PGE2 release. Co-stimulation with CNP and dynamic compression enhanced anabolic activities and inhibited catabolic effects induced by IL-1ß. The presence of CNP and the Npr2 antagonist abolished the anabolic response to mechanical loading and prevented loading-induced inhibition of NO and PGE2 release. In contrast, the presence of the Npr3 agonist had the opposite effect and increased GAG synthesis and cGMP levels in response to mechanical loading and reduced NO and PGE2 release comparable to control samples. In addition, CNP concentration and natriuretic peptide receptor expression were increased with dynamic compression. CONCLUSIONS: Mechanical loading mediates endogenous CNP release leading to increased natriuretic peptide signalling. The loading-induced CNP/Npr2/cGMP signalling route mediates anabolic events and prevents catabolic activities induced by IL-1ß. The CNP pathway therefore represents a potentially chondroprotective intervention for patients with OA, particularly when combined with physiotherapeutic approaches to stimulate biomechanical signals.


Assuntos
Cartilagem/metabolismo , Peptídeo Natriurético Tipo C/metabolismo , Osteoartrite/metabolismo , Receptores do Fator Natriurético Atrial/metabolismo , Idoso , Reatores Biológicos , Cartilagem/patologia , Células Cultivadas , Feminino , Humanos , Masculino , Microscopia de Fluorescência , Pessoa de Meia-Idade , Modelos Biológicos , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...