Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Magn Reson ; 364: 107707, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38908331

RESUMO

While pulsed field gradient stimulated echo nuclear magnetic resonance (PFGSTE NMR) spectroscopy has found widespread use in the quantification of self-diffusivity for many NMR-active nuclei, extending this technique to uncommon nuclei with unfavorable NMR properties remains an active area of research. Potassium-39 (39K) is an archetypical NMR nucleus exhibiting an unfavorable gyromagnetic ratio combined with a very low Larmor frequency. Despite these unfavorable properties, this work demonstrates that 39K PFGSTE NMR experiments are possible in aqueous solutions of concentrated potassium nitrite. Analysis of the results indicates that 39K NMR diffusometry is feasible when the nuclei exhibit spin-lattice and spin-spin relaxation coefficients on the order of 60-100 ms and 50-100 ms, respectively. The diffusivity of 39K followed Arrhenius behavior, and comparative 23Na, 7Li, and 1H PFGSTE NMR studies of equimolal sodium nitrite and lithium nitrite solutions led to correlations between the enthalpy of hydration with the activation energy governing self-diffusion of the cations and also of water. Realizing the feasibility of 39K PFGSTE NMR spectroscopy has a widespread impact across energy sciences because potassium is a common alkali element in energy storage materials and other applications.

2.
J Phys Chem Lett ; 15(19): 5076-5087, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38708887

RESUMO

The dynamics, orientational anisotropy, diffusivity, viscosity, and density were measured for concentrated lithium salt solutions, including lithium chloride (LiCl), lithium bromide (LiBr), lithium nitrite (LiNO2), and lithium nitrate (LiNO3), with methyl thiocyanate as an infrared vibrational probe molecule, using two-dimensional infrared spectroscopy (2D IR), nuclear magnetic resonance (NMR) spectroscopy, and viscometry. The 2D IR, NMR, and viscosity results show that LiNO2 exhibits longer correlation times, lower diffusivity, and nearly 4 times greater viscosity compared to those of the other lithium salt solutions of the same concentration, suggesting that nitrite anions may strongly facilitate structure formation via strengthening water-ion network interactions, directly impacting bulk solution properties at sufficiently high concentrations. Additionally, the LiNO2 and LiNO3 solutions show significantly weakened chemical interactions between the lithium cations and the methyl thiocyanate when compared with those of the lithium halide salts.

3.
Environ Sci Technol ; 58(20): 8909-8918, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38728532

RESUMO

Over 4 million liters of mixed acidic (∼pH 2.5), high ionic strength (∼5 M nitrate) plutonium (Pu) processing waste were released into the 216-Z-9 (Z-9) trench at the Hanford Site, USA, and trace Pu has migrated 37 m below the trench. In this study, we used flowthrough columns to investigate Pu transport in simplified processing waste through uncontaminated Hanford sediments to determine the conditions that led to Pu migration. In low pH aqueous fluids, some Pu breakthrough is observed at pH < 4, and increased Pu transport (14% total Pu breakthrough) is observed at pH < 2. However, Pu migrates in organic processing solvents through low pH sediments virtually uninhibited with approximately 94 and 86% total Pu breakthrough observed at pH 1 and pH 3, respectively. This study demonstrates that Pu migration can occur both with and without organic solvents at pH < 4, but significantly more Pu can be transported when partitioned into organic processing solvents. Our data suggest that under acidic conditions (pH < 4) in the vadose zone beneath the Z-9 trench, Pu present in organic processing solvents moved relatively unhindered and may explain the historical downward migration of Pu tens of meters below the Z-9 trench.


Assuntos
Plutônio , Concentração de Íons de Hidrogênio , Poluentes Radioativos da Água , Sedimentos Geológicos/química , Resíduos Radioativos , Solventes/química
4.
Phys Chem Chem Phys ; 26(13): 9867-9870, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38477345

RESUMO

The generation and stabilization of gamma radiation-induced hydrogen atoms in gibbsite (Al(OH)3) nanoplates is directly related to the nature of residual ions from synthetic precursors used, whether nitrates or chlorides. The concentration of hydrogen atoms trapped in the interstitial layers of gibbsite is lower and decays faster in comparison to boehmite (AlOOH), which could affect the management of these materials in radioactive waste.

6.
Science ; 383(6687): 1118-1122, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38359104

RESUMO

Attosecond-pump/attosecond-probe experiments have long been sought as the most straightforward method for observing electron dynamics in real time. Although there has been much success with overlapped near-infrared femtosecond and extreme ultraviolet attosecond pulses combined with theory, true attosecond-pump/attosecond-probe experiments have been limited. We used a synchronized attosecond x-ray pulse pair from an x-ray free-electron laser to study the electronic response to valence ionization in liquid water through all x-ray attosecond transient absorption spectroscopy (AX-ATAS). Our analysis showed that the AX-ATAS response is confined to the subfemtosecond timescale, eliminating any hydrogen atom motion and demonstrating experimentally that the 1b1 splitting in the x-ray emission spectrum is related to dynamics and is not evidence of two structural motifs in ambient liquid water.

8.
Environ Sci Technol ; 58(4): 2017-2026, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38214482

RESUMO

Understanding the dissolution of boehmite in highly alkaline solutions is important to processing complex nuclear waste stored at the Hanford (WA) and Savannah River (SC) sites in the United States. Here, we report the adsorption of model carboxylates on boehmite nanoplates in alkaline solutions and their effects on boehmite dissolution in 3 M NaOH at 80 °C. Although expectedly lower than at circumneutral pH, adsorption of oxalate occurred at pH 13, with adsorption decreasing linearly to 3 M NaOH. Classical molecular dynamics simulations suggest that the adsorption of oxalate dianions onto the boehmite surface under high pH can occur through either inner- or outer-sphere complexation mechanisms depending on adsorption sites. However, both adsorption models indicate relatively weak binding, with an energy preference of 1.26 to 2.10 kcal/mol. By preloading boehmite nanoplates with oxalate or acetate, we observed suppression of dissolution rates by 23 or 10%, respectively, compared to pure solids. Scanning electron microscopy and transmission electron microscopy characterizations revealed no detectable difference in the morphologic evolution of the dissolving boehmite materials. We conclude that preadsorbed carboxylates can persist on boehmite surfaces, decreasing the density of dissolution-active sites and thereby adding extrinsic controls on dissolution rates.


Assuntos
Hidróxido de Alumínio , Óxido de Alumínio , Hidróxido de Sódio , Hidróxido de Alumínio/química , Óxido de Alumínio/química , Adsorção , Oxalatos
9.
Sci Total Environ ; 912: 168883, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38040367

RESUMO

Land-applied biosolids can be a considerable source of microplastics in soils. Previous studies reported microplastics accumulation in soils from biosolid application, however, little is known about the contribution of atmospherically deposited microplastics to agricultural soils. In this study, we quantified and characterized microplastics in soils that have been amended with biosolids over the past 23 years. We also collected atmospheric deposition samples to determine the amount and type of plastics added to soils through atmospheric input over a period of about 2 years. Soil samples were taken from a replicated field trial where biosolids have been applied at rates of 0, 4.8, 6.9, and 9.0 t/ha every second crop. The biosolids were anaerobically digested and dewatered, and were applied by spreading onto the soil surface. Soil and atmospheric samples were extracted for microplastics by Fenton's reaction to remove organic matter followed by flotation in a zinc chloride solution to separate plastic from soil particles. Samples were analyzed for microplastics by optical microscopy and Laser Direct Infrared Imaging Analysis (LDIR). The mean number of microplastics identified from biosolids samples was 12,000 particles/kg dry biosolids. The long-term applications of biosolids to the soil led to mean plastics concentrations of 383, 500, and 361 particles/kg dry soil in the 0-10 cm depth for low, medium, and high biosolids application rates, respectively. These plastic concentrations were not significantly different from each other, but significantly higher than those found in non biosolids-amended soil (117 particles/kg dry soil). The dominant plastic types by number found in biosolids were polyurethane, followed by polyethylene, and polyamide. The most abundant plastics in soil samples were polyurethane, polyethylene terephthalate, polyamide, and polyethylene. Atmospheric deposition contributed to 15 particles/kg dry soil per year and was mainly composed of polyamide fibers. This study shows that long-term application of biosolids led to an accumulation of microplastics in soil, but that atmospheric deposition also contributes a considerable input of microplastics.


Assuntos
Poluentes do Solo , Solo , Microplásticos , Plásticos , Biossólidos , Poliuretanos , Nylons , Poluentes do Solo/análise , Polietilenos , Esgotos
10.
Chem Commun (Camb) ; 59(97): 14407-14410, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37975198

RESUMO

Predicting the behavior of oxyanions in radioactive waste stored at the Department of Energy legacy nuclear sites requires the development of novel analytical methods. This work demonstrates 15N pulsed field gradient nuclear magnetic resonance spectroscopy to quantify the diffusivity of nitrite. Experimental results, supported by molecular dynamics simulations, indicate that the diffusivity of free hydrated nitrite exceeds that of free hydrated sodium despite the greater hydrodynamic radius of nitrite. Investigations are underway to understand how the compositional and dynamical heterogeneities of the ion networks at high concentrations affect rheological and transport properties.

11.
Chem Commun (Camb) ; 59(69): 10400-10403, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37551780

RESUMO

Understanding multiple lengthscale correlations in the pair distribution functions (PDFs) of aq. electrolytes is a persistent challenge. Here, the coordination chemistry of polyoxoanions supports an ion-network of cation-coordination polyhedra in NaNO3(aq) and NaNO2(aq) that induce long-range solution structure. Oxygen correlations associated with Na+-coordination polyhedra have two characteristics lengthscales; 3.5-5.5 Å and 5.5-7.5 Å, the latter solely associated oligomers. The PDF contraction between 5.5-7.5 Å observed in many electrolytes is attributed to the distinct O⋯O correlation found in dimers and dimer subunits within oligomers.

12.
ACS Nano ; 17(16): 15556-15567, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37556761

RESUMO

Predicting nanoparticle aggregation and attachment phenomena requires a rigorous understanding of the interplay among crystal structure, particle morphology, surface chemistry, solution conditions, and interparticle forces, yet no comprehensive picture exists. We used an integrated suite of experimental, theoretical, and simulation methods to resolve the effect of solution pH on the aggregation of boehmite nanoplatelets, a case study with important implications for the environmental management of legacy nuclear waste. Real-time observations showed that the particles attach preferentially along the (010) planes at pH 8.5 and the (101) planes at pH 11. To rationalize these results, we established the connection between key physicochemical phenomena across the relevant length scales. Starting from molecular-scale simulations of surface hydroxyl reactivity, we developed an interfacial-scale model of the corresponding electrostatic potentials, with subsequent particle-scale calculations of the resulting driving forces allowing successful prediction of the attachment modes. Finally, we scaled these phenomena to understand the collective structure at the aggregate-scale. Our results indicate that facet-specific differences in surface chemistry produce heterogeneous surface charge distributions that are coupled to particle anisotropy and shape-dependent hydrodynamic forces, to play a key role in controlling aggregation behavior.

13.
J Hazard Mater ; 459: 132165, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37531768

RESUMO

Mechanism of hexavalent chromium removal (Cr(VI) as CrO42-) by the weak-base ion exchange (IX) resin ResinTech® SIR-700-HP (SIR-700) from simulated groundwater is assessed in the presence of radioactive contaminants iodine-129 (as IO3-), uranium (U as uranyl UO22+), and technetium-99 (as TcO4-), and common environmental anions sulfate (SO42-) and chloride (Cl-). Batch tests using the acid sulfate form of SIR-700 demonstrated Cr(VI) and U(VI) removal exceeded 97%, except in the presence of high SO42- concentrations (536 mg/L) where Cr(VI) and U(VI) removal decreased to ≥ 80%. However, Cr(VI) removal notably improved with co-mingled U(VI) that complexes with SO42- at the protonated amine sites. These U-SO42- complexes are integral to U(VI) removal, as confirmed by the decrease in U(VI) removal (<40%) when the acid chloride form of SIR-700 was used instead. Solid phase characterization revealed that CrO42- is removed by IX with SO42- complexes and/or reduced to amorphous Cr(III)(OH)3 at secondary alcohol sites. Tc(VII)O4- and I(V)O3- also undergo chemical reduction, following a similar removal mechanism. Oxyanion removal preference is determined by the anion reduction potential (CrO42->TcO4->IO3-), geometry, and charge density. For these reasons, 39% and 69% of TcO4- and 17% and 39% of IO3- are removed in the presence and absence of Cr(VI), respectively.

14.
J Phys Chem Lett ; 14(30): 6743-6748, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37470756

RESUMO

Reactive force fields (RFFs) are an expedient approach to sample chemical reaction paths in complex systems, relative to density functional theory. However, there is continued need to improve efficiencies, specifically in systems that have slow transverse degrees of freedom, as in highly viscous and superconcentrated solutions. Here, we present an RFF that is differentiated from current models (e.g., ReaxFF) by omitting explicit dependence on the atom coordination and employing a small parameter set based on Lennard-Jones, Gaussian, and Stillinger-Weber potentials. The model was parametrized from AIMD simulation data and is used to model aluminate reactivity in sodium hydroxide solutions with extensive validation against experimental radial distribution functions, computed free energy profiles for oligomerization, and formation energies. The model enables simulation of early stage Al(OH)3 nucleation which has significant relevance to industrial processing of aluminum and has a computational cost that is reduced by 1 order of magnitude relative to ReaxFF.

15.
J Chem Phys ; 158(22)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37306956

RESUMO

Ultraviolet (UV) photolysis of nitrite ions (NO2-) in aqueous solutions produces a suite of radicals, viz., NO·, O-, ·OH, and ·NO2. The O- and NO· radicals are initially formed from the dissociation of photoexcited NO2-. The O- radical undergoes reversible proton transfer with water to generate ·OH. Both ·OH and O- oxidize the NO2- to ·NO2 radicals. The reactions of ·OH occur at solution diffusion limits, which are influenced by the nature of the dissolved cations and anions. Here, we systematically varied the alkali metal cation, spanning the range from strongly to weakly hydrating ions, and measured the production of NO·, ·OH, and ·NO2 radicals during UV photolysis of alkaline nitrite solutions using electron paramagnetic resonance spectroscopy with nitromethane spin trapping. Comparing the data for the different alkali cations revealed that the nature of the cation had a significant effect on production of all three radical species. Radical production was inhibited in solutions with high charge density cations, e.g., lithium, and promoted in solutions containing low charge density cations, e.g., cesium. Through complementary investigations with multinuclear single pulse direct excitation nuclear magnetic resonance (NMR) spectroscopy and pulsed field gradient NMR diffusometry, cation-controlled solution structures and extent of NO2- solvation were determined to alter the initial yields of ·NO and ·OH radicals as well as alter the reactivity of NO2- toward ·OH, impacting the production of ·NO2. The implications of these results for the retrieval and processing of low-water, highly alkaline solutions that comprise legacy radioactive waste are discussed.

16.
J Colloid Interface Sci ; 637: 326-339, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36706728

RESUMO

HYPOTHESIS: The precipitation and dissolution of aluminum-bearing mineral phases in aqueous systems often proceed via changes in both aluminum coordination number and connectivity, complicating molecular-scale interpretation of the transformation mechanism. Here, the thermally induced transformation of crystalline sodium aluminum salt hydrate, a phase comprised of monomeric octahedrally coordinated aluminate which is of relevance to industrial aluminum processing, has been studied. Because intermediate aluminum coordination states during melting have not previously been detected, it is hypothesized that the transition to lower coordinated aluminum ions occurs within ahighly disordered quasi-two-dimensional phase at the solid-solution interface. EXPERIMENTS AND SIMULATIONS: In situ X-ray diffraction (XRD), Raman and27Al nuclear magnetic resonance (NMR) spectroscopy were used to monitor the melting transition of nonasodium aluminate hydrate (NSA, Na9[Al(OH)6]2·3(OH)·6H2O). A mechanistic interpretation was developed based on complementary classical molecular dynamics (CMD) simulations including enhanced sampling. A reactive forcefield was developed to bridge speciation in the solution and in the solid phase. FINDINGS: In contrast to classical dissolution, aluminum coordination change proceeds through a dynamically stabilized ensemble of intermediate states in a disordered layer at the solid-solution interface. In both melting and dissolution of NSA, octahedral, monomeric aluminum transition through an intermediate of pentahedral coordination. The intermediate dehydroxylates to form tetrahedral aluminate (Al(OH)4-) in the liquid phase. This coordination change is concomitant with a breaking of the ionic aluminate-sodium ionlinkages. The solution phase Al(OH)4- ions subsequently polymerize into polynuclear aluminate ions. However, there are some differences between bulk melting and interfacial dissolution, with the onset of the surface-controlled process occurring at a lower temperature (∼30 °C) and the coordination change taking place more gradually as a function of temperature. This work to determine the local structure and dynamics of aluminum in the disordered layer provides a new basis to understand mechanisms controlling aluminum phase transformations in highly alkaline solutions.

17.
Inorg Chem ; 61(38): 14987-14996, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36099562

RESUMO

The aqueous hydration structure of the Bi3+ ion is probed using a combination of extended X-ray absorption fine structure (EXAFS) spectroscopy and density functional theory (DFT) simulations of ion-water clusters and condensed-phase solutions. Anomalous features in the EXAFS spectra are found to be associated with a highly asymmetric first-solvent water shell. The aqueous chemistry and structure of the Bi3+ ion are dramatically controlled by the water stabilization of a lone-pair electronic state involving the mixed 6s and 6p orbitals. This leads to a distinct multimodal distribution of water molecules in the first shell that are separated by about 0.2 Å. The lone-pair structure is stabilized by a collective response of multiple waters that are localized near the lone-pair anti-bonding site. The findings indicate that the lone-pair stereochemistry of aqueous Bi3+ ions plays a major role in the binding of water and ligands in aqueous solutions.

18.
Environ Sci Technol ; 56(8): 5029-5036, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35390256

RESUMO

Over the last several decades, there have been several studies examining the radiation stability of boehmite and other aluminum oxyhydroxides, yet less is known about the impact of radiation on boehmite dissolution. Here, we investigate radiation effects on the dissolution behavior of boehmite by employing liquid-phase transmission electron microscopy (LPTEM) and varying the electron flux on the samples consisting of either single nanoplatelets or aggregated stacks. We show that boehmite nanoplatelets projected along the [010] direction exhibit uniform dissolution with a strong dependence on the electron dose rate. For nanoplatelets that have undergone oriented aggregation, we show that the dissolution occurs preferentially at the particles at the ends of the stacks that are more accessible to bulk solution than at the others inside the aggregate. In addition, at higher dose rates, electrostatic repulsion and knock-on damage from the electron beam causes delamination of the stacks and dissolution at the interfaces between particles in the aggregate, indicating that there is a threshold dose rate for electron-beam enhancement of dissolution of boehmite aggregates.

19.
Langmuir ; 38(10): 3090-3097, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35226492

RESUMO

Spent nuclear fuel contains both uranium (U) and high yield fission products, including strontium-90 (90Sr), a key radioactive contaminant at nuclear facilities. Both U and 90Sr will be present where spent nuclear fuel has been processed, including in storage ponds and tanks. However, the interactions between Sr and U phases under ambient conditions are not well understood. Over a pH range of 4-14, we investigate Sr sorption behavior in contact with two nuclear fuel cycle relevant U(IV) phases: nano-uraninite (UO2) and U(IV)-silicate nanoparticles. Nano-UO2 is a product of the anaerobic corrosion of metallic uranium fuel, and UO2 is also the predominant form of U in ceramic fuels. U(IV)-silicates form stable colloids under the neutral to alkaline pH conditions highly relevant to nuclear fuel storage ponds and geodisposal scenarios. In sorption experiments, Sr had the highest affinity for UO2, although significant Sr sorption also occurred to U(IV)-silicate phases at pH ≥ 6. Extended X-ray absorption fine structure (EXAFS) spectroscopy, transmission electron microscopy, and desorption data for the UO2 system suggested that Sr interacted with UO2 via a near surface, highly coordinated complex at pH ≥ 10. EXAFS measurements for the U(IV)-silicate samples showed outer-sphere Sr sorption dominated at acidic and near-neutral pH with intrinsic Sr-silicates forming at pH ≥ 12. These complex interactions of Sr with important U(IV) phases highlight a largely unrecognized control on 90Sr mobility in environments of relevance to spent nuclear fuel management and storage.

20.
Magn Reson Chem ; 60(2): 226-238, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34536037

RESUMO

Although nanometer-sized aluminum hydroxide clusters (i.e., ϵ-Al13 , [Al13 O4 (OH)24 (H2 O)12 ]7+ ) command a central role in aluminum ion speciation and transformations between minerals, measurement of their translational diffusion is often limited to indirect methods. Here, 27 Al pulsed field gradient stimulated echo nuclear magnetic resonance (PFGSTE NMR) spectroscopy has been applied to the AlO4 core of the ϵ-Al13 cluster with complementary theoretical simulations of the diffusion coefficient and corresponding hydrodynamic radii from a boundary element-based calculation. The tetrahedral AlO4 center of the ϵ-Al13 cluster is symmetric and exhibits only weak quadrupolar coupling, which results in favorable T1 and T2 27 Al NMR relaxation coefficients for 27 Al PFGSTE NMR studies. Stokes-Einstein relationship was used to relate the 27 Al diffusion coefficient of the ϵ-Al13 cluster to the hydrodynamic radius for comparison with theoretical simulations, dynamic light scattering from literature, and previously published 1 H PFGSTE NMR studies of chelated Keggin clusters. This first-of-its-kind observation proves that 27 Al PFGSTE NMR diffusometry can probe symmetric Al environments in polynuclear clusters of greater molecular weight than previously considered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...