Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vet Pharmacol Ther ; 43(2): 162-170, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32012314

RESUMO

In equine and racing practice, detomidine and butorphanol are commonly used in combination for their sedative properties. The aim of the study was to produce detection times to better inform European veterinary surgeons, so that both drugs can be used appropriately under regulatory rules. Three independent groups of 7, 8 and 6 horses, respectively, were given either a single intravenous administration of butorphanol (100 µg/kg), a single intravenous administration of detomidine (10 µg/kg) or a combination of both at 25 (butorphanol) and 10 (detomidine) µg/kg. Plasma and urine concentrations of butorphanol, detomidine and 3-hydroxydetomidine at predetermined time points were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The intravenous pharmacokinetics of butorphanol dosed individually compared with co-administration with detomidine had approximately a twofold larger clearance (646 ± 137 vs. 380 ± 86 ml hr-1  kg-1 ) but similar terminal half-life (5.21 ± 1.56 vs. 5.43 ± 0.44 hr). Pseudo-steady-state urine to plasma butorphanol concentration ratios were 730 and 560, respectively. The intravenous pharmacokinetics of detomidine dosed as a single administration compared with co-administration with butorphanol had similar clearance (3,278 ± 1,412 vs. 2,519 ± 630 ml hr-1  kg-1 ) but a slightly shorter terminal half-life (0.57 ± 0.06 vs. 0.70 ± 0.11 hr). Pseudo-steady-state urine to plasma detomidine concentration ratios are 4 and 8, respectively. The 3-hydroxy metabolite of detomidine was detected for at least 35 hr in urine from both the single and co-administrations. Detection times of 72 and 48 hr are recommended for the control of butorphanol and detomidine, respectively, in horseracing and equestrian competitions.


Assuntos
Analgésicos/farmacocinética , Butorfanol/farmacocinética , Cavalos/sangue , Imidazóis/farmacocinética , Condicionamento Físico Animal , Analgésicos/administração & dosagem , Animais , Butorfanol/administração & dosagem , Butorfanol/sangue , Butorfanol/urina , Quimioterapia Combinada , Cavalos/urina , Imidazóis/administração & dosagem , Imidazóis/sangue , Imidazóis/urina , Injeções Intravenosas
2.
Steroids ; 146: 79-91, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30951760

RESUMO

Boldenone is an anabolic-androgenic steroid that is prohibited in equine sports. Urine from the uncastrated male horse contains boldenone that is thought to be of endogenous origin and thus a threshold ('cut-off') concentration has been adopted internationally for free and conjugated boldenone to help distinguish cases of doping from its natural production. The testis is likely to be a source of boldenone. Qualitative analysis was performed on extracts of equine testicular homogenates (n = 3 horses) incubated non-spiked and in the presence of its potential precursors using liquid chromatography tandem mass spectrometry (LC-MS/MS) and LC high resolution mass spectrometry (LC-HRMS). Samples were analysed both underivatised and derivatised to increase the certainty of identification. In addition to previously reported endogenous steroids, analysis of non-spiked testicular tissue samples demonstrated the presence of boldenone and boldienone at trace levels in the equine testis. Incubation of homogenates with deuterium or carbon isotope labelled testosterone and androstenedione resulted in the matching stable isotope analogues of boldenone and boldienone being formed. Additionally, deuterium and carbon labelled 2-hydroxyandrostenedione was detected, raising the possibility that this steroid is a biosynthetic intermediate. In conclusion, boldenone and boldienone are naturally present in the equine testis, with the biosynthesis of these steroids arising from the conversion of testosterone and androstenedione. However, additional work employing larger numbers of animals, further enzyme kinetic experiments and pure reference standards for 2-OH androstenedione isomers would be required to better characterize the pathways involved in these transformations.


Assuntos
Testículo/metabolismo , Testosterona/análogos & derivados , Animais , Cavalos , Masculino , Testosterona/biossíntese , Testosterona/química , Testosterona/metabolismo
3.
Drug Test Anal ; 5(5): 306-14, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22514113

RESUMO

Fluticasone propionate (FP) is an anti-inflammatory agent with topical and inhaled applications commonly used in the treatment of asthma in steroid-dependent individuals. The drug is used in racehorses to treat Inflammatory Airway Disease; this work was performed in order to advise on its use and detect potential misuse close to racing. Methods were developed for the extraction and analysis of FP from horse plasma and a carboxylic acid metabolite (FP-17ßCOOH) from horse urine. The methods utilize ultra high performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) in order to detect the extremely low concentrations of analyte present in both matrices. The developed methods were used to analyse plasma and urine samples collected following inhaled administration of FP to six thoroughbred horses. FP was detected in plasma for a minimum of 72 h post-administration and FP-17ßCOOH was detected in urine for approximately 18 h post-administration. The results show that it is possible to detect FP in the horse following inhaled administration.


Assuntos
Androstadienos/sangue , Androstadienos/urina , Anti-Inflamatórios/sangue , Anti-Inflamatórios/urina , Cavalos/sangue , Cavalos/urina , Administração por Inalação , Androstadienos/administração & dosagem , Androstadienos/metabolismo , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/metabolismo , Cromatografia Líquida de Alta Pressão , Fluticasona , Espectrometria de Massas em Tandem
4.
Drug Test Anal ; 3(4): 206-13, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21287693

RESUMO

Analysis of equine plasma samples to detect the abuse of anabolic steroids can be complicated when the parent steroid is endogenous to the animal. Anabolic steroids are usually administered intramuscularly as synthetic esters and therefore detection of the exogenous esters provides unequivocal proof of illegal administration. An ultra high performance liquid chromatography tandem mass spectrometric (UPLC-MSMS) method for the analysis of esters of testosterone (propionate, phenylpropionate, isocaproate, and decanoate) and boldenone (undecylenate) in equine plasma has been developed. Esters were extracted from equine plasma using a mixture of hexane and ethyl acetate and treated with methoxyamine hydrochloride to form methyloxime derivatives. Metenolone enanthate was used as an internal standard. After chromatographic separation, the derivatized steroid esters were quantified using selected reaction monitoring (SRM). The limit of detection for all of the steroid esters, based on a signal to noise ratio (S/N) of 3:1, was 1-3 pg/mL. The lower limit of quantification (LLOQ) for the all of the steroid esters was 5 pg/mL when 2 mL of plasma was extracted. Recovery of the steroid esters was 85-97% for all esters except for testosterone decanoate which was recovered at 62%. The intra-day coefficient of variation (CV) for the analysis of plasma quality control (QC) samples was less than 9.2% at 40 pg/mL and less than 6.0% at 400 pg/mL. The developed assay was used to successfully confirm the presence of intact testosterone esters in equine plasma samples following intramuscular injection of Durateston® (mixed testosterone esters).


Assuntos
Cavalos/sangue , Oximas/sangue , Espectrometria de Massas em Tandem/normas , Testosterona/análogos & derivados , Testosterona/sangue , Anabolizantes/administração & dosagem , Anabolizantes/sangue , Animais , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida de Alta Pressão/normas , Dopagem Esportivo/prevenção & controle , Ésteres , Injeções Intramusculares , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos , Testosterona/administração & dosagem
5.
Steroids ; 75(10): 643-52, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20381511

RESUMO

Effective detection of the abuse of androgenic-anabolic steroids in human and animal sports often requires knowledge of the drug's metabolism in order to target appropriate urinary metabolites. 'Designer' steroids are problematic since it is difficult to obtain ethical approval for in vivo metabolism studies due to a lack of a toxicological profile. In this study, the in vitro metabolism of estra-4,9-diene-3,17-dione is reported for the first time. This is also the first study comparing the metabolism of a designer steroid in the three major species subject to sport's doping control; namely the equine, canine and human. In order to allow the retrospective analysis of sample testing data, the use of a high-resolution (HR) accurate-mass Thermo LTQ-Orbitrap LC-MS instrument was employed for metabolite identification of underivatised sample extracts. The full scan HR-LC-MS Orbitrap data was complimented by several further experiments targeted at elucidating more detailed structural information for the most abundant metabolites. These included; HR-LC-MS/MS of the underivatised metabolites, functional group selective chemical derivatisation followed by full scan HR-LC-MS, enzyme inhibition experiments and full scan electron ionization GC-MS analysis of methoxyamine-trimethylsilyl derivatives. The major metabolite detected in all species, and therefore the most suitable candidate for screening of estra-4,9-diene-3,17-dione abuse, was proposed to be an isomer of 17-hydroxy-estra-4,9-dien-3-one. Less significant metabolic pathways in all species included hydroxylation and reduction followed by hydroxylation. Reductive metabolism in the canine was less significant than in the other two species, while the equine was unique in producing a di-reduced metabolite (proposed to be an isomer of estra-4,9-diene-3,17-diol) and also relatively large quantities of d-ring hydroxy and hydroxy-reduced metabolites.


Assuntos
Dopagem Esportivo/prevenção & controle , Estrenos/química , Estrenos/metabolismo , Detecção do Abuso de Substâncias/métodos , Animais , Cromatografia Líquida , Cães , Cromatografia Gasosa-Espectrometria de Massas , Cavalos , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...