Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 326(2): C442-C448, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38009196

RESUMO

Smooth muscle cells transition reversibly between contractile and noncontractile phenotypes in response to diverse influences, including many from mitochondria. Numerous molecules including myocardin, procontractile miRNAs, and the mitochondrial protein prohibitin-2 promote contractile differentiation; this is opposed by mitochondrial reactive oxygen species (mtROS), high lactate concentrations, and metabolic reprogramming induced by mitophagy and/or mitochondrial fission. A major pathway through which vascular pathologies such as oncogenic transformation, pulmonary hypertension, and atherosclerosis cause loss of vascular contractility is by enhancing mitophagy and mitochondrial fission with secondary effects on smooth muscle phenotype. Proproliferative miRNAs and the mitochondrial translocase TOMM40 also attenuate contractile differentiation. Hypoxia can initiate loss of contractility by enhancing mtROS and lactate production while simultaneously depressing mitochondrial respiration. Mitochondria can reduce cytosolic calcium by moving it across the inner mitochondrial membrane via the mitochondrial calcium uniporter, and then through mitochondria-associated membranes to and from calcium stores in the sarcoplasmic/endoplasmic reticulum. Through these effects on calcium, mitochondria can influence multiple calcium-sensitive nuclear transcription factors and genes, some of which govern smooth muscle phenotype, and possibly also the production of genomically encoded mitochondrial proteins and miRNAs (mitoMirs) that target the mitochondria. In turn, mitochondria also can influence nuclear transcription and mRNA processing through mitochondrial retrograde signaling, which is currently a topic of intensive investigation. Mitochondria also can signal to adjacent cells by contributing to the content of exosomes. Considering these and other mechanisms, it is becoming increasingly clear that mitochondria contribute significantly to the regulation of smooth muscle phenotype and differentiation.


Assuntos
Cálcio , MicroRNAs , Cálcio/metabolismo , Músculo Liso Vascular/metabolismo , Mitocôndrias/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fenótipo , Lactatos/metabolismo
2.
Am J Physiol Regul Integr Comp Physiol ; 321(3): R441-R453, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34318702

RESUMO

The rate-limiting enzyme for vascular contraction, myosin light chain kinase (MLCK), phosphorylates regulatory myosin light chain (MLC20) at rates that appear faster despite lower MLCK abundance in fetal compared with adult arteries. This study explores the hypothesis that greater apparent tissue activity of MLCK in fetal arteries is due to age-dependent differences in intracellular distribution of MLCK in relation to MLC20. Under optimal conditions, common carotid artery homogenates from nonpregnant adult female sheep and near-term fetuses exhibited similar values of Vmax and Km for MLCK. A custom-designed, computer-controlled apparatus enabled electrical stimulation and high-speed freezing of arterial segments at exactly 0, 1, 2, and 3 s, calculation of in situ rates of MLC20 phosphorylation, and measurement of time-dependent colocalization between MLCK and MLC20. The in situ rate of MLC20 phosphorylation divided by total MLCK abundance averaged to values 147% greater in fetal (1.06 ± 0.28) than adult (0.43 ± 0.08) arteries, which corresponded, respectively, to 43 ± 10% and 31 ± 3% of the Vmax values measured in homogenates. Confocal colocalization analysis revealed in fetal and adult arteries that 33 ± 6% and 20 ± 5% of total MLCK colocalized with pMLC20, and that MLCK activation was greater in periluminal than periadventitial regions over the time course of electrical stimulation in both age groups. Together, these results demonstrate that the catalytic activity of MLCK is similar in fetal and adult arteries, but that the fraction of total MLCK in the functional compartment involved in contraction is significantly greater in fetal than adult arteries.


Assuntos
Artérias Carótidas/enzimologia , Cadeias Leves de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Fatores Etários , Animais , Cálcio/metabolismo , Calmodulina/metabolismo , Artérias Carótidas/crescimento & desenvolvimento , Catálise , Estimulação Elétrica , Feminino , Feto , Idade Gestacional , Cinética , Fosforilação , Carneiro Doméstico
3.
Int J Mol Sci ; 22(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445547

RESUMO

The present study explored the hypothesis that an adverse intrauterine environment caused by maternal undernutrition (MUN) acted through corticosteroid-dependent and -independent mechanisms to program lasting functional changes in the neonatal cerebrovasculature and vulnerability to mild hypoxic-ischemic (HI) injury. From day 10 of gestation until term, MUN and MUN-metyrapone (MUN-MET) group rats consumed a diet restricted to 50% of calories consumed by a pair-fed control; and on gestational day 11 through term, MUN-MET groups received drinking water containing MET (0.5 mg/mL), a corticosteroid synthesis inhibitor. P9/P10 pups underwent unilateral carotid ligation followed 24 h later by 1.5 h exposure to 8% oxygen (HI treatment). An ELISA quantified MUN-, MET-, and HI-induced changes in circulating levels of corticosterone. In P11/P12 pups, MUN programming promoted contractile differentiation in cerebrovascular smooth muscle as determined by confocal microscopy, modulated calcium-dependent contractility as revealed by cerebral artery myography, enhanced vasogenic edema formation as indicated by T2 MRI, and worsened neurobehavior MUN unmasked HI-induced improvements in open-field locomotion and in edema resolution, alterations in calcium-dependent contractility and promotion of contractile differentiation. Overall, MUN imposed multiple interdependent effects on cerebrovascular smooth muscle differentiation, contractility, edema formation, flow-metabolism coupling and neurobehavior through pathways that both required, and were independent of, gestational corticosteroids. In light of growing global patterns of food insecurity, the present study emphasizes that infants born from undernourished mothers may experience greater risk for developing neonatal cerebral edema and sensorimotor impairments possibly through programmed changes in neonatal cerebrovascular function.


Assuntos
Córtex Cerebral/irrigação sanguínea , Corticosterona/metabolismo , Transtornos da Nutrição Fetal/etiologia , Hipóxia-Isquemia Encefálica/etiologia , Hipóxia-Isquemia Encefálica/metabolismo , Exposição Materna/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal , Animais , Biomarcadores , Corticosterona/sangue , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Hipóxia-Isquemia Encefálica/diagnóstico por imagem , Hipóxia-Isquemia Encefálica/patologia , Imageamento por Ressonância Magnética , Microscopia Confocal , Gravidez , Ratos
4.
Am J Physiol Regul Integr Comp Physiol ; 320(1): R1-R18, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33112654

RESUMO

Changes in vascular contractility are among the most important physiological effects of acute and chronic fetal hypoxia. Given the essential role of myosin light-chain kinase (MLCK) in smooth muscle contractility and its heterogeneous distribution, this study explores the hypothesis that subcellular changes in MLCK distribution contribute to hypoxic modulation of fetal carotid artery contractility. Relative to common carotid arteries from normoxic term fetal lambs (FN), carotids from fetal lambs gestated at high altitude (3,802 m) (FH) exhibited depressed contractility without changes in MLCK mRNA or protein abundance. Patterns of confocal colocalization of MLCK with α-actin and 20-kDa regulatory myosin light chain (MLC20) enabled calculation of subcellular MLCK fractions: 1) colocalized with the contractile apparatus, 2) colocalized with α-actin distant from the contractile apparatus, and 3) not colocalized with α-actin. Chronic hypoxia did not affect MLCK abundance in the contractile fraction, despite a concurrent decrease in contractility. Organ culture for 72 h under 1% O2 decreased total MLCK abundance in FN and FH carotid arteries, but decreased the contractile MLCK abundance only in FH carotid arteries. Correspondingly, culture under 1% O2 depressed contractility more in FH than FN carotid arteries. In addition, hypoxia appeared to attenuate ubiquitin-independent proteasomal degradation of MLCK, as reported for other proteins. In aggregate, these results demonstrate that the combination of chronic hypoxia followed by hypoxic culture can induce MLCK translocation among at least three subcellular fractions with possible influences on contractility, indicating that changes in MLCK distribution are a significant component of fetal vascular responses to hypoxia.


Assuntos
Artérias Carótidas/enzimologia , Feto/irrigação sanguínea , Hipóxia/enzimologia , Quinase de Cadeia Leve de Miosina/metabolismo , Vasoconstrição , Altitude , Animais , Artérias Carótidas/fisiopatologia , Hipóxia Celular , Estabilidade Enzimática , Feminino , Idade Gestacional , Hipóxia/genética , Hipóxia/fisiopatologia , Quinase de Cadeia Leve de Miosina/genética , Técnicas de Cultura de Órgãos , Gravidez , Complexo de Endopeptidases do Proteassoma/metabolismo , Transporte Proteico , Proteólise , Carneiro Doméstico , Ubiquitinação
5.
Front Neurosci ; 14: 46, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116501

RESUMO

Intracerebral hemorrhage (ICH) remains one of the most debilitating types of stroke and is characterized by a sudden bleeding from a ruptured blood vessel. ICH often results in high mortality and in survivors, permanent disability. Most studies have focused on neuroprotective strategies designed to minimize secondary consequences and prevent further pathology. Lacking is an understanding of how ICH acutely affects cerebrovascular components and their response to therapeutic interventions. We hypothesized that ICH alters cortical vessel complexity in the parenchyma adjacent to site of the initial vascular disruption and that vascular abnormalities would be mitigated by administration of the PDGFR inhibitor, Imatinib mesylate (Gleevec). Briefly, ICH was induced in male adult rats by injection of collagenase into basal ganglia, followed by Gleevec administration (60 mg/kg) 1 h after injury. Rats were then perfused using vessel painting methodology (Salehi et al., 2018b) to stain whole brain vascular networks at 1 day post-ICH. Axial and coronal wide field fluorescence microscopy was performed. Analyses for vascular features were undertaken and fractal analysis for vascular complexity. Data were collected from four groups of rats: Sham + Vehicle; Sham + Gleevec; ICH + Vehicle; ICH + Gleevec. Microscopy revealed that cortical vessels in both ipsi- and contralateral hemispheres exhibited significantly reduced density and branching by 22 and 34%, respectively. Fractal measures confirmed reduced complexity as well. Gleevec treatment further reduced vascular parameters, including reductions in vessel density in tissues adjacent to the ICH. The reductions in brain wide vascular networks after Gleevec in the current study after ICH is contrasted by previous reports of improved behavioral outcomes and decreased lCH lesion volumes Reductions in the vascular network after Gleevec may be involved in long-term repair mechanisms by pruning injured vessels to ultimately promote new vessel growth.

6.
J Neurosci Res ; 98(1): 141-154, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30892744

RESUMO

Intranasal recombinant osteopontin (OPN) has been shown to be neuroprotective in different models of acquired brain injury but has never been tested after traumatic brain injury (TBI). We used a model of moderate-to-severe controlled cortical impact in male adult Sprague Dawley rats and tested our hypothesis that OPN treatment would improve neurological outcomes, lesion and brain tissue characteristics, neuroinflammation, and vascular characteristics at 1 day post-injury. Intranasal OPN administered 1 hr after the TBI did not improve neurological score, lesion volumes, blood-brain barrier, or vascular characteristics. When assessing neuroinflammation, we did not observe any effect of OPN on the astrocyte reactivity but discovered an increased number of activated microglia within the ipsilateral hemisphere. Moreover, we found a correlation between edema and heme oxygenase-1 (HO-1) expression which was decreased in OPN-treated animals, suggesting an effect of OPN on the HO-1 response to injury. Thus, OPN may increase or accelerate the microglial response after TBI, and early response of HO-1 in modulating edema formation may limit the secondary consequences of TBI at later time points. Additional experiments and at longer time points are needed to determine if intranasal OPN could potentially be used as a treatment after TBI where it might be beneficial by activating protective signaling pathways.


Assuntos
Edema Encefálico/tratamento farmacológico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Osteopontina/administração & dosagem , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Edema Encefálico/metabolismo , Edema Encefálico/patologia , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Masculino , Microglia/metabolismo , Microglia/patologia , Fármacos Neuroprotetores/uso terapêutico , Osteopontina/uso terapêutico , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
7.
Am J Physiol Regul Integr Comp Physiol ; 318(1): R1-R16, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31577477

RESUMO

This study explored the hypothesis that late gestational reduction of corticosteroids transforms the cerebrovasculature and modulates postnatal vulnerability to mild hypoxic-ischemic (HI) injury. Four groups of Sprague-Dawley neonates were studied: 1) Sham-Control, 2) Sham-MET, 3) HI-Control, and 4) HI-MET. Metyrapone (MET), a corticosteroid synthesis inhibitor, was administered via drinking water from gestational day 11 to term. In Shams, MET administration 1) decreased reactivity of the hypothalamic-pituitary-adrenal (HPA) axis to surgical trauma in postnatal day 9 (P9) pups by 37%, 2) promoted cerebrovascular contractile differentiation in middle cerebral arteries (MCAs), 3) decreased compliance ≤46% and increased depolarization-induced calcium mobilization in MCAs by 28%, 4) mildly increased hemispheric cerebral edema by 5%, decreased neuronal degeneration by 66%, and increased astroglial and microglial activation by 10- and 4-fold, respectively, and 5) increased righting reflex times by 29%. Regarding HI, metyrapone-induced fetal transformation 1) diminished reactivity of the HPA axis to HI-induced stress in P9/P10 pups, 2) enhanced HI-induced contractile dedifferentiation in MCAs, 3) lessened the effects of HI on MCA compliance and calcium mobilization, 4) decreased HI-induced neuronal injury but unmasked regional HI-induced depression of microglial activation, and 5) attenuated the negative effects of HI on open-field exploration but enhanced the detrimental effects of HI on negative geotaxis responses by 79%. Overall, corticosteroids during gestation appear essential for normal cerebrovascular development and glial quiescence but induce persistent changes that in neonates manifest beneficially as preservation of postischemic contractile differentiation but detrimentally as worsened ischemic cerebrovascular compliance, increased ischemic neuronal injury, and compromised neurobehavior.


Assuntos
Transtornos Cerebrovasculares/tratamento farmacológico , Piridinas/farmacologia , Animais , Animais Recém-Nascidos , Artérias Carótidas , Feminino , Hipóxia , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/prevenção & controle , Ligadura , Gravidez , Cuidado Pré-Natal , Piridinas/uso terapêutico , Ratos , Ratos Sprague-Dawley
8.
Am J Physiol Cell Physiol ; 317(1): C3-C19, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30840494

RESUMO

MicroRNAs (miRNAs) are a class of highly conserved non-coding RNAs with 21-25 nucleotides in length and play an important role in regulating gene expression at the posttranscriptional level via base-paring with complementary sequences of the 3'-untranslated region of the target gene mRNA, leading to either transcript degradation or translation inhibition. Brain-enriched miRNAs act as versatile regulators of brain development and function, including neural lineage and subtype determination, neurogenesis, synapse formation and plasticity, neural stem cell proliferation and differentiation, and responses to insults. Herein, we summarize the current knowledge regarding the role of miRNAs in brain development and cerebrovascular pathophysiology. We review recent progress of the miRNA-based mechanisms in neuronal and cerebrovascular development as well as their role in hypoxic-ischemic brain injury. These findings hold great promise, not just for deeper understanding of basic brain biology but also for building new therapeutic strategies for prevention and treatment of pathologies such as cerebral ischemia.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Transtornos Cerebrovasculares/metabolismo , MicroRNAs/metabolismo , Neovascularização Patológica , Neovascularização Fisiológica , Neurogênese , Neurônios/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Transtornos Cerebrovasculares/genética , Transtornos Cerebrovasculares/fisiopatologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hipóxia-Isquemia Encefálica/genética , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/fisiopatologia , MicroRNAs/genética , Transdução de Sinais
9.
J Cereb Blood Flow Metab ; 39(7): 1369-1380, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29480757

RESUMO

Platelet-derived growth factor receptor-ß (PDGFR-ß) has been reported to promote phenotypic transformation of vascular smooth muscle cells (VSMCs). The purpose of this study was to investigate the role of the PDGFR-ß/IRF9/SIRT-1/NF-κB pathway in VSMC phenotypic transformation after subarachnoid hemorrhage (SAH). SAH was induced using the endovascular perforation model in Sprague-Dawley rats. PDGFR-ß small interfering RNA (siRNA) and IRF9 siRNA were injected intracerebroventricularly 48 h before SAH. SIRT1 activator (resveratrol) and inhibitor (EX527) were administered intraperitoneally 1 h after SAH induction. Twenty-four hours after SAH, the VSMC contractile phenotype marker α-smooth muscle actin (α-SMA) decreased, whereas the VSMC synthetic phenotype marker embryonic smooth muscle myosin heavy chain (Smemb) increased. Both PDGFR-ß siRNA and IRF9 siRNA attenuated the induction of nuclear factor-κB (NF-κB) and enhanced the expression of α-SMA. The SIRT1 activator (resveratrol) preserved VSMC contractile phenotype, significantly alleviated neurological dysfunction, and reduced brain edema. However, these beneficial effects of PDGFR-ß siRNA, IRF9 siRNA and resveratrol were abolished by the SIRT1 inhibitor (EX527). This study shows that PDGFR-ß/IRF9/SIRT-1/NF-κB signaling played a role in the VSMC phenotypic transformation after SAH. Inhibition of this signaling cascade preserved the contractile phenotype of VSMCs, thereby improving neurological outcomes following SAH.


Assuntos
Fator Gênico 3 Estimulado por Interferon, Subunidade gama/fisiologia , Músculo Liso Vascular/fisiopatologia , NF-kappa B/fisiologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/fisiologia , Sirtuína 1/fisiologia , Hemorragia Subaracnóidea/fisiopatologia , Actinas/análise , Animais , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Masculino , Músculo Liso Vascular/química , Cadeias Pesadas de Miosina/análise , Fenótipo , RNA Interferente Pequeno/administração & dosagem , Ratos , Ratos Sprague-Dawley , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Resveratrol/farmacologia , Transdução de Sinais/fisiologia , Sirtuína 1/antagonistas & inibidores , Hemorragia Subaracnóidea/etiologia
10.
Semin Pediatr Neurol ; 28: 17-28, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30522724

RESUMO

The human cerebral vasculature originates in the fourth week of gestation and continues to expand and diversify well into the first few years of postnatal life. A key feature of this growth is smooth muscle differentiation, whereby smooth muscle cells within cerebral arteries transform from migratory to proliferative to synthetic and finally to contractile phenotypes. These phenotypic transformations can be reversed by pathophysiological perturbations such as hypoxia, which causes loss of contractile capacity in immature cerebral arteries. In turn, loss of contractility affects all whole-brain cerebrovascular responses, including those involved in flow-metabolism coupling, vasodilatory responses to acute hypoxia and hypercapnia, cerebral autoregulation, and reactivity to activation of perivascular nerves. Future strategies to minimize cerebral injury following hypoxia-ischemic insults in the immature brain might benefit by targeting treatments to preserve and promote contractile differentiation in the fetal cerebrovasculature. This could potentially be achieved through inhibition of receptor tyrosine kinase-mediated growth factors, such as vascular endothelial growth factor and platelet-derived growth factor, which are mobilized by hypoxic and ischemic injury and which facilitate contractile dedifferentiation. Interruption of the effects of other vascular mitogens, such as endothelin and angiotensin-II, and even some miRNA species, also could be beneficial. Future experimental work that addresses these possibilities offers promise to improve current clinical management of neonates who have suffered and survived hypoxic, ischemic, asphyxic, or inflammatory cerebrovascular insults.


Assuntos
Artérias Cerebrais , Transtornos Cerebrovasculares , Doenças Fetais , Hipóxia Encefálica , Artérias Cerebrais/embriologia , Artérias Cerebrais/crescimento & desenvolvimento , Artérias Cerebrais/metabolismo , Artérias Cerebrais/fisiopatologia , Transtornos Cerebrovasculares/metabolismo , Transtornos Cerebrovasculares/fisiopatologia , Doenças Fetais/metabolismo , Doenças Fetais/fisiopatologia , Humanos , Hipóxia Encefálica/metabolismo , Hipóxia Encefálica/fisiopatologia
11.
Transl Stroke Res ; 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29766452

RESUMO

We introduce a novel protocol to stain, visualize, and analyze blood vessels from the rat and mouse cerebrum. This technique utilizes the fluorescent dye, DiI, to label the lumen of the vasculature followed by perfusion fixation. Following brain extraction, the labeled vasculature is then imaged using wide-field fluorescence microscopy for axial and coronal images and can be followed by regional confocal microscopy. Axial and coronal images can be analyzed using classical angiographic methods for vessel density, length, and other features. We also have developed a novel fractal analysis to assess vascular complexity. Our protocol has been optimized for adult rat, adult mouse, and neonatal mouse studies. The protocol is efficient, can be rapidly completed, stains cerebral vessels with a bright fluorescence, and provides valuable quantitative data. This method has a broad range of applications, and we demonstrate its use to study the vasculature in assorted models of acquired brain injury.

12.
Physiol Rev ; 98(3): 1241-1334, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29717932

RESUMO

Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.


Assuntos
Desenvolvimento Fetal , Hipóxia Fetal/metabolismo , Adaptação Fisiológica , Tecido Adiposo/embriologia , Animais , Epigênese Genética , Feminino , Coração Fetal/crescimento & desenvolvimento , Cardiopatias/etiologia , Humanos , Hipertensão Pulmonar/congênito , Sistema Hipotálamo-Hipofisário , Saúde Materna , Sistema Hipófise-Suprarrenal , Circulação Placentária , Gravidez
13.
Aging Cell ; 17(3): e12748, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29603864

RESUMO

Aortic stiffening is an independent risk factor that underlies cardiovascular morbidity in the elderly. We have previously shown that intrinsic mechanical properties of vascular smooth muscle cells (VSMCs) play a key role in aortic stiffening in both aging and hypertension. Here, we test the hypothesis that VSMCs also contribute to aortic stiffening through their extracellular effects. Aortic stiffening was confirmed in spontaneously hypertensive rats (SHRs) vs. Wistar-Kyoto (WKY) rats in vivo by echocardiography and ex vivo by isometric force measurements in isolated de-endothelized aortic vessel segments. Vascular smooth muscle cells were isolated from thoracic aorta and embedded in a collagen I matrix in an in vitro 3D model to form reconstituted vessels. Reconstituted vessel segments made with SHR VSMCs were significantly stiffer than vessels made with WKY VSMCs. SHR VSMCs in the reconstituted vessels exhibited different morphologies and diminished adaptability to stretch compared to WKY VSMCs, implying dual effects on both static and dynamic stiffness. SHR VSMCs increased the synthesis of collagen and induced collagen fibril disorganization in reconstituted vessels. Mechanistically, compared to WKY VSMCs, SHR VSMCs exhibited an increase in the levels of active integrin ß1- and bone morphogenetic protein 1 (BMP1)-mediated proteolytic cleavage of lysyl oxidase (LOX). These VSMC-induced alterations in the SHR were attenuated by an inhibitor of serum response factor (SRF)/myocardin. Therefore, SHR VSMCs exhibit extracellular dysregulation through modulating integrin ß1 and BMP1/LOX via SRF/myocardin signaling in aortic stiffening.


Assuntos
Aorta/fisiopatologia , Matriz Extracelular/genética , Músculo Liso Vascular/metabolismo , Ratos Endogâmicos SHR/anormalidades , Rigidez Vascular/fisiologia , Animais , Masculino , Ratos
14.
J Neurotrauma ; 35(14): 1646-1658, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29648973

RESUMO

We previously reported that traumatic brain injuries (TBI) alter the cerebrovasculature near the injury site in rats, followed by revascularization over a 2-week period. Here, we tested our hypothesis that male and female adult mice have differential cerebrovascular responses following a moderate controlled cortical impact (CCI). Using in vivo magnetic resonance imaging (MRI), a new technique called vessel painting, and immunohistochemistry, we found no differences between males and females in lesion volume, neurodegeneration, blood-brain barrier (BBB) alteration, and microglia activation. However, females exhibited more astrocytic hypertrophy and heme-oxygenase-1 (HO-1) induction at 1 day post-injury (dpi), whereas males presented with increased endothelial activation and expression of ß-catenin, shown to be involved in angiogenesis. At 7 dpi, we observed an increase in the number of vessels and an enhancement in vessel complexity in the injured cortex of males compared with females. Cerebrovasculature recovers differently after CCI, suggesting biological sex should be considered when designing new therapeutic agents.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Córtex Cerebral/patologia , Caracteres Sexuais , Animais , Córtex Cerebral/irrigação sanguínea , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
15.
Am J Physiol Regul Integr Comp Physiol ; 314(6): R870-R882, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29513562

RESUMO

Bradykinin-induced activation of the pulmonary endothelium triggers a rise in intracellular Ca2+ that activates nitric oxide (NO)-dependent vasorelaxation. Chronic hypoxia is commonly associated with increased pulmonary vascular tone, which can cause pulmonary hypertension in responsive individuals. In the present study, we tested the hypothesis that long-term high-altitude hypoxia (LTH) diminishes bradykinin-induced Ca2+ signals and inhibits endothelial nitric oxide synthase (eNOS), prostacyclin (PGI2), and large-conductance K+ (BKCa) channels in sheep, which are moderately responsive to LTH, resulting in decreased pulmonary arterial vasorelaxation. Pulmonary arteries were isolated from ewes kept near sea level (720 m) or at high altitude (3,801 m) for >100 days. Vessel force was measured with wire myography and endothelial intracellular Ca2+ with confocal microscopy. eNOS was inhibited with 100 µM NG-nitro-l-arginine methyl ester (l-NAME), PGI2 production was inhibited with 10 µM indomethacin that inhibits cyclooxygenase, and BKCa channels were blocked with 1 mM tetraethylammonium. Bradykinin-induced endothelial Ca2+ signals increased following LTH, but bradykinin relaxation decreased. Furthermore, some vessels contracted in response to bradykinin after LTH. l-NAME sensitivity decreased, suggesting that eNOS dysfunction played a role in uncoupling Ca2+ signals and bradykinin relaxation. The Ca2+ ionophore A-23187 (10 µM) elicited an enhanced Ca2+ response following LTH while relaxation was unchanged although l-NAME sensitivity increased. Additionally, BKCa function decreased during bradykinin relaxation following LTH. Western analysis showed that BKCa α-subunit expression was increased by LTH while that for the ß1 subunit was unchanged. Overall, these results suggest that those even moderately responsive to LTH can have impaired endothelial function.


Assuntos
Altitude , Sinalização do Cálcio/efeitos dos fármacos , Hipóxia/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Animais , Bradicinina/farmacologia , Inibidores Enzimáticos/farmacologia , Epoprostenol/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Contração Muscular/efeitos dos fármacos , Relaxamento Muscular/efeitos dos fármacos , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Ovinos
17.
J Cereb Blood Flow Metab ; 38(1): 87-102, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27864464

RESUMO

Intracerebral hemorrhage (ICH) represents the deadliest subtype of all strokes. The development of brain edema, a consequence of blood-brain barrier (BBB) disruption, is the most life-threatening event after ICH. Pathophysiological conditions activate the endothelium, one of the components of BBB, inducing rearrangement of the actin cytoskeleton. Upon activation, globular actin assembles into a filamentous actin resulting in the formation of contractile actin bundles, stress fibers. The contraction of stress fibers leads to the formation of intercellular gaps between endothelial cells increasing the permeability of BBB. In the present study, we investigated the effect of ICH on stress fiber formation in CD1 mice. We hypothesized that ICH-induced formation of stress fiber is triggered by the activation of PDGFR-ß and mediated by the cortactin/RhoA/LIMK pathway. We demonstrated that ICH induces formation of stress fibers. Furthermore, we demonstrated that the inhibition of PDGFR-ß and its downstream reduced the number of stress fibers, preserving BBB and resulting in the amelioration of brain edema and improvement of neurological functions in mice after ICH.


Assuntos
Barreira Hematoencefálica/patologia , Hemorragias Intracranianas/patologia , Fibras de Estresse/patologia , Animais , Permeabilidade Capilar/fisiologia , Masculino , Camundongos
18.
J Cereb Blood Flow Metab ; 38(2): 274-289, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29160735

RESUMO

Recent data suggest that repairing the cerebral vasculature after traumatic brain injury (TBI) may help to improve functional recovery. The Wnt/ß-catenin signaling pathway promotes blood vessel formation during vascular development, but its role in vascular repair after TBI remains elusive. In this study, we examined how the cerebral vasculature responds to TBI and the role of Wnt/ß-catenin signaling in vascular repair. We induced a moderate controlled cortical impact in adult mice and performed vessel painting to visualize the vascular alterations in the brain. Brain tissue around the injury site was assessed for ß-catenin and vascular markers. A Wnt transgenic mouse line was utilized to evaluate Wnt gene expression. We report that TBI results in vascular loss followed by increases in vascular structure at seven days post injury (dpi). Immature, non-perfusing vessels were evident in the tissue around the injury site. ß-catenin protein expression was significantly reduced in the injury site at 7 dpi. However, there was an increase in ß-catenin expression in perilesional vessels at 1 and 7 dpi. Similarly, we found increased number of Wnt-GFP-positive vessels after TBI. Our findings suggest that Wnt/ß-catenin expression contributes to the vascular repair process after TBI.


Assuntos
Vasos Sanguíneos/patologia , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/patologia , Neovascularização Fisiológica/genética , Proteínas Wnt/biossíntese , Proteínas Wnt/genética , Via de Sinalização Wnt/genética , beta Catenina/biossíntese , beta Catenina/genética , Animais , Encéfalo/patologia , Química Encefálica/genética , Circulação Cerebrovascular/genética , Regulação da Expressão Gênica/genética , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
Front Physiol ; 8: 677, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28979210

RESUMO

Hypoxic environments at high altitude have significant effects on kidney injury. Following injury, renal primary cilia display length alterations. Primary cilia are mechanosensory organelles that regulate tubular architecture. The effect of hypoxia on cilia length is still controversial in cultured cells, and no corresponding in vivo study exists. Using fetal and adult sheep, we here study the effect of chronic hypobaric hypoxia on the renal injury, intracellular calcium signaling and the relationship between cilia length and cilia function. Our results show that although long-term hypoxia induces renal fibrosis in both fetal and adult kidneys, fetal kidneys are more susceptible to hypoxia-induced renal injury. Unlike hypoxic adult kidneys, hypoxic fetal kidneys are characterized by interstitial edema, tubular disparition and atrophy. We also noted that there is an increase in the cilia length as well as an increase in the cilia function in the hypoxic fetal proximal and distal collecting epithelia. Hypoxia, however, has no significant effect on primary cilia in the adult kidneys. Increased cilia length is also associated with greater flow-induced intracellular calcium signaling in renal epithelial cells from hypoxic fetuses. Our studies suggest that while hypoxia causes renal fibrosis in both adult and fetal kidneys, hypoxia-induced alteration in cilia length and function are specific to more severe renal injuries in fetal hypoxic kidneys.

20.
J Cereb Blood Flow Metab ; 37(12): 3818-3823, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28925323

RESUMO

Recirculation, from arterial inflow routes through venous outflow pathways, was conceptualized in stroke research 50 years ago. As new technologies were developed, blocked arteries could be reopened, capillaries could be reperfused, and the use of recanalization and reperfusion grew to dominate therapeutic strategies. These approaches overwhelmingly focused on restoration of arterial and capillary inflow, but not on veins even though venous disorders may initiate or exacerbate brain injury. In this commentary, we advance the term "recirculation" after "recanalization" and "reperfusion" as a primary concept of stroke pathophysiology that targets the restoration of both the arterial and venous cerebral circulations.


Assuntos
Artérias/fisiopatologia , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia , Veias/fisiopatologia , Animais , Encéfalo/fisiopatologia , Humanos , Reperfusão/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...