Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(33): 15026-15032, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35969692

RESUMO

Axial chirality features prominently in molecules of biological interest as well as chiral catalyst designs, and atropisomeric 2,2'-biphenols are particularly prevalent. Atroposelective metal-catalyzed cross-coupling is an attractive and modular approach to access enantioenriched biphenols, and yet existing protocols cannot achieve this directly. We address this challenge through the use of enantiopure, sulfonated SPhos (sSPhos), an existing ligand that has until now been used only in racemic form and that derives its chirality from an atropisomeric axis that is introduced through sulfonation. We believe that attractive noncovalent interactions involving the ligand sulfonate group are responsible for the high levels of asymmetric induction that we obtain in the 2,2'-biphenol products of Suzuki-Miyaura coupling, and we have developed a highly practical resolution of sSPhos via diastereomeric salt recrystallization.


Assuntos
Estereoisomerismo , Catálise , Ligantes
2.
J Am Chem Soc ; 140(42): 13570-13574, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30295472

RESUMO

Control of site-selectivity in chemical reactions that occur remote from existing functionality remains a major challenge in synthetic chemistry. We describe a strategy that enables three of the most commonly used cross-coupling processes to occur with high site-selectivity on dichloroarenes that bear acidic functional groups. We have achieved this by repurposing an established sulfonylated phosphine ligand to exploit its inherent bifunctionality. Mechanistic studies suggest that the sulfonate group engages in attractive electrostatic interactions with the cation associated with the deprotonated substrate, guiding cross-coupling to the chloride at the arene meta position. This counterintuitive combination of anionic ligand and anionic substrate demonstrates an alternative design principle when considering the application of noncovalent interactions to direct catalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...