Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 193(2): 397-408, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22066945

RESUMO

• Plant light interception efficiency is a crucial determinant of carbon uptake by individual plants and by vegetation. Our aim was to identify whole-plant variables that summarize complex crown architecture, which can be used to predict light interception efficiency. • We gathered the largest database of digitized plants to date (1831 plants of 124 species), and estimated a measure of light interception efficiency with a detailed three-dimensional model. Light interception efficiency was defined as the ratio of the hemispherically averaged displayed to total leaf area. A simple model was developed that uses only two variables, crown density (the ratio of leaf area to total crown surface area) and leaf dispersion (a measure of the degree of aggregation of leaves). • The model explained 85% of variation in the observed light interception efficiency across the digitized plants. Both whole-plant variables varied across species, with differences in leaf dispersion related to leaf size. Within species, light interception efficiency decreased with total leaf number. This was a result of changes in leaf dispersion, while crown density remained constant. • These results provide the basis for a more general understanding of the role of plant architecture in determining the efficiency of light harvesting.


Assuntos
Biodiversidade , Luz , Fotoquímica/métodos , Plantas/anatomia & histologia , Plantas/efeitos da radiação , Madeira/anatomia & histologia , Madeira/efeitos da radiação , Tamanho Corporal , Modelos Biológicos , Dinâmica não Linear , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos da radiação , Análise de Regressão
2.
Oecologia ; 135(1): 22-9, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12647100

RESUMO

We used Y-plant, a computer-based model of crown architecture, to examine the implications of leaf reorientation resulting from petiole bending in Psychotria limonensis (Rubiaceae) seedlings. During this reorientation process, bending of the petioles of lower leaves that are potentially self-shaded by the upper leaves rotates the lamina around the stem's orthotropic axis so that self-shading is reduced. Simulations of daily light capture and assimilation revealed a 66% increase in daily C gain due to reorientation of the leaves as compared to simulations where the leaves remained in their characteristic opposite decussate pattern set by the phyllotaxy. This was due to enhanced carbon (C) gain of the lower leaves because of the reduction of shading by upper developing leaves in the same vertical plane. The light signal for this movement was experimentally examined by placing leaf-shaped filters above already fully expanded leaves and following the resulting shade-avoiding movements. The filters were either neutral density shade cloth that reduced the photon flux density (PFD) but did not alter the red to far red ratio (R:FR) or a film that reduced the PFD equivalently but also reduced the R:FR. Leaf reorientation was much more rapid and complete under the low R:FR as compared to the high R:FR indicating involvement of a phytochrome photosensory system that detected the presence of a shading leaf. Plants in gaps were found to lack a reorientation response indicating that the reorientation is specific to the shaded understory environment.


Assuntos
Carbono/metabolismo , Luz , Modelos Teóricos , Psychotria/crescimento & desenvolvimento , Adaptação Fisiológica
3.
Oecologia ; 122(4): 470-478, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28308338

RESUMO

Rates of photosynthetic induction upon exposure to high light and rates of induction loss after darkening the leaf were measured in the field for four species of tropical shrubs in the family Rubiaceae. During wet season mornings, stomatal conductance (g s) in the shade prior to induction was generally high enough so that the time course of induction was determined primarily by rates of activation of biochemical processes. During wet season afternoons, however, g s values in the shade tended to be considerably lower and photosynthetic induction following a light increase exhibited a slower time course. In the afternoon, the time course of induction was determined by a combination of stomatal opening time and the rates of activation of light regulated enzymes. Stomatal behavior was also correlated with patterns of induction loss following a transfer from high light to darkness. In the afternoon, maximum g s was lower for all species, and for a given time in the darkness, leaves showed a greater loss of induction in the afternoon than in the morning. During the dry season, maximum g s and average values for g s in the shade were reduced in all species. Along with these shifts in stomatal behavior, reduced rates of photosynthetic induction were observed. In the high-light species, the lower maximum g s values observed during the dry season were also correlated with increased induction loss for a given time in the darkness. For all species, stomatal behavior was affected by season and time of day and, with the exception of wet season mornings, stomata appeared to exert significant control over rates of induction and patterns of induction loss. The results of simulation modeling suggest that the observed seasonal and diurnal changes in rates of induction and induction loss can have significant consequences on sunfleck carbon gain under a dynamic light regime.

4.
Oecologia ; 122(4): 479-486, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28308339

RESUMO

Photosynthetic performance under dynamic light regimes was assessed in four different species of tropical shrubs from the family Rubiaceae via field gas exchange measurements conducted on Barro Colorado Island, Panamá. Rates of photosynthetic induction and induction loss were assessed throughout the day in both the wet and dry seasons in order to determine the relative roles of stomata and biochemistry in limiting photosynthetic performance under transient light conditions. A high degree of coordination was observed between stomatal conductance and biochemical capacity for CO2 assimilation during induction. Rates of biochemical and overall photosynthetic induction sharply decreased when initial stomatal conductance fell below a narrow range of critical values. Time of day or season did not affect rates of biochemical deactivation upon shading, but did influence stomatal closure, which often exerted a significant influence over induction loss in the darkness. In measurements of total assimilation due to a 60-s light pulse, both biochemical activity and stomatal conductance were linearly related to total CO2 uptake. Only during the mornings of the wet season was stomatal conductance consistently high enough to be non-limiting to dynamic photosynthetic performance. At all other times, stomatal behavior exercised significant influence over induction times, photosynthetic induction loss, and total CO2 uptake from 60-s light pulses.

5.
Tree Physiol ; 19(3): 173-180, 1999 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12651580

RESUMO

Relationships between CO(2) assimilation at light saturation (A(max)), nitrogen (N) content and weight per unit area (W(A)) were studied in leaves grown with contrasting irradiances (outer canopy versus inner canopy) and N supply rates in field-grown nectarine trees Prunus persica L. Batsch. cv. Fantasia. Both A(max) and N content per unit leaf area (N(A)) were linearly correlated to W(A), but leaves in the high-N treatment had higher N(A) and A(max) for the same value of W(A) than leaves in the low-N treatment. The curvilinear relationship between photosynthesis and total leaf N was independent of treatments, both when expressed per unit leaf area A(maxA) and N(A)) and per unit leaf weight (A(maxW) and N(W)), but the relationship was stronger when data were expressed on a leaf area basis. Both A(maxA) and N(A) were higher for outer canopy leaves than for inner canopy leaves and A(maxW) and N(W) were higher for leaves in the high-N treatment than for leaves in the low-N treatment. The relationship between A(max) and N resulted in a similar photosynthetic nitrogen-use efficiency at light saturation (A(max)NUE) for both N and light treatments. Photosynthetic nitrogen-use efficiency was similar among treatments throughout the whole light response curve of photosynthesis. Leaves developed in shade conditions did not show higher N-use efficiency at low irradiance. At any intercellular CO(2) partial pressure (C(i)), photosynthetic CO(2) response curves were higher for outer canopy leaves and, within each light treatment, were higher for the high-N treatments than for the low-N treatments. Consequently, most of the differences among treatments disappeared when photosynthesis was expressed per unit N. However, slightly higher assimilation rates per unit N were found for outer canopy leaves compared with inner canopy leaves, in both N treatments. Because higher daily irradiance within the canopies of the low-N trees more than compensated for the lower photosynthetic performances of these leaves compared to the leaves of high-N trees, daily carbon gain (and N-use efficiency on a daily assimilation basis) per leaf was higher for the low-N treatment than for the high-N treatment in both outer and inner canopy leaves.

6.
Oecologia ; 121(2): 171-182, 1999 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28308557

RESUMO

The influence of leaf orientation and position within shoots on individual leaf light environments, carbon gain, and susceptibility to photoinhibition was studied in the California chaparral shrub Heteromeles arbutifolia with measurements of gas exchange and chlorophyll fluorescence, and by application of a three-dimensional canopy architecture model. Simulations of light absorption and photosynthesis revealed a complex pattern of leaf light environments and resulting leaf carbon gain within the shoots. Upper, south-facing leaves were potentially the most productive because they intercepted greater daily photon flux density (PFD) than leaves of any other orientation. North-facing leaves intercepted less PFD but of this, more was received on the abaxial surface because of the steep leaf angles. Leaves differed in their response to abaxial versus adaxial illumination depending on their orientation. While most had lower photosynthetic rates when illuminated on their abaxial as compared to adaxial surface, the photosynthetic rates of north-facing leaves were independent of the surface of illumination. Because of the increasing self-shading, there were strong decreases in absorbed PFD and daily carbon gain in the basipetal direction. Leaf nitrogen per unit mass also decreased in the basipetal direction but on a per unit area basis was nearly constant along the shoot. The decrease in leaf N per unit mass was accounted for by an increase in leaf mass per unit area (LMA) rather than by movement of N from older to younger leaves during shoot growth. The increased LMA of older lower leaves may have contributed directly to their lower photosynthetic capacities by increasing the limitations to diffusion of CO2 within the leaf to the sites of carboxylation. There was no evidence for sun/shade acclimation along the shoot. Upper leaves and especially south-facing upper leaves had a potential risk for photoinhibition as demonstrated by the high PFDs received and the diurnal decreases in the fluorescence ratio F v/F m. Predawn F v/F m ratios remained high (>0.8) indicating that when in their normal orientations leaves sustained no photoinhibition. Reorientation of the leaves to horizontal induced a strong sustained decrease in F v/F m and CO2 exchange that slowly recovered over the next 10-15 days. If leaves were also inverted so that the abaxial surface received the increased PFDs, then the reduction in F v/F m and CO2 assimilation was much greater with no evidence for recovery. The heterogeneity of responses was due to a combination of differences between leaves of different orientation, differences between responses on their abaxial versus adaxial surfaces, and differences along the shoot due to leaf age and self-shading effects.

7.
Plant Physiol ; 109(1): 307-317, 1995 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12228597

RESUMO

Alocasia (Alocasia macrorrhiza [L.] G. Don) and soybean (Glycine max [L.]) were grown under high or low photon flux density (PFD) conditions to achieve a range of photosynthetic capacities and light-adaptation modes. The CO2 assimilation rate and in vivo linear electron transport rate (Jf) were determined over a range of PFDs and under saturating 1-s-duration lightflecks applied at a range of frequencies. At the same mean PFD, the assimilation rate and the Jf were lower under the lightfleck regimes than under constant light. The activation state of two, key enzymes of the photosynthetic carbon reduction cycle pathway, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and fructose-1,6-bisphosphatase, and the photosynthetic induction states (ISs) were also found to be lower under flashing as compared to continuous PFD. Under all conditions, the IS measured 120 s after an increase in PFD to constant and saturating values was highly correlated with the Rubisco activation state and stomatal conductances established in the light regime before the increase. Both the fructose-1,6-bisphosphatase and Rubisco activities established in a particular light regime were highly correlated with the mean Jf in that regime. The relationships between enzyme activation state and Jf and between IS and enzyme activation state were similar in soybean and Alocasia and were not affected either by growth-light regime, and hence photosynthetic capacity, or by flashing versus constant PFD. The common relationship between the linear Jf and the activation state of key enzymes suggests that electron transport may be the determinant of the signal regulating IS, at least to the extent that the IS is controlled by the activation state of key stromal enzymes.

8.
Plant Physiol ; 105(4): 1115-1123, 1994 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12232269

RESUMO

This study was undertaken to examine the dependence of the regulatory enzymes of photosynthetic induction on photon flux density (PFD) exposure in soybean (Glycine max L.). The induction state varies as a function of both the magnitude and duration of the PFD levels experienced prior to an increase in PFD. The photosynthetic induction state results from the combined activity of separate processes that each in turn depend on prior PFD environment in different ways. Direct measurement of enzyme activities coupled with determination of in situ metabolite pool sizes indicated that the fast-induction component was associated with the activation state of stromal fructose-1,6-bisphosphatase (FBPase, EC 3.1.3.11) and showed rapid deactivation in the dark and at low PFD. The fast-induction component was activated at low PFD levels, around 70 [mu]mol photons m-2 s-1. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 2.7.1.19) deactivated very slowly in the dark and required higher PFD for activation. Both enzymes saturated at lower PFD than did photosynthesis, around 400 [mu]mol photons m-2 s-1. Ribulose-5-phosphate kinase (EC 2.7.1.19) appeared never to be limiting to photosynthesis, and saturated at much lower PFD than either FBPase or Rubisco. Determination of photosynthetic metabolite pool sizes from leaves at different positions within a soybean canopy showed a limitation to carbon uptake at the stromal FBPase and possibly the sedoheptulose-1,7-bisphosphatase (EC 3.1.3.37) in shade leaves upon initial illumination at saturating PFD levels.

9.
Photosynth Res ; 41(2): 295-302, 1994 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24310112

RESUMO

The mechanisms regulating transient photosynthesis by soybean (Glycine max) leaves were examined by comparing photosynthetic rates and carbon reduction cycle enzyme activities under flashing (saturating 1 s lightflecks separated by low photon flux density (PFD) periods of different durations) and continuous PFD. At the same mean PFD, the mean photosynthetic rates were reduced under flashing as compared to continuous light. However, as the duration of the low PFD period lengthened, the CO2 assimilation attributable to a lightfleck increased. This enhanced lightfleck CO2 assimilation was accounted for by a greater postillumination CO2 fixation occurring after the lightfleck. The induction state of photosynthesis, ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco), fructose 1,6-bisphosphatase (FBPase) and ribulose 5-phosphate kinase (Ru5P kinase) activities all responded similarly and were all lower under flashing as compared to constant PFD of the same integrated mean value. However, the fast phase of induction and FBPase and Ru5P kinase activities were reduced more than were the slow phase of induction and rubisco activity. This was consistent with the role of the former enzymes in the fast induction component that limited RuBP regeneration. Competition for reducing power between carbon metabolism and thioredoxin-mediated enzyme activation may have resulted in lower enzyme activation states and hence lower induction states under flashing than continuous PFD, especially at low lightfleck frequencies (low mean PFD).

10.
Plant Physiol ; 103(3): 823-828, 1993 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12231981

RESUMO

Leaves of maize (Zea mays L.) were enclosed in a temperature-controlled cuvette under 35 Pa (350 [mu]bars) CO2 and 0.2 kPa (0.2%)O2 and exposed to short periods (1-30 s) of illumination (light-flecks). The rate and total amount of CO2 assimilated and O2 evolved were measured. The O2 evolution rate was taken as an indicator of the rate of photosynthetic noncyclic electron transport (NCET). In this C4 species, the response of electron transport during the lightflecks qualitatively mimicked that of C3 species previously tested, whereas the response of CO2 assimilation differed. Under short-duration lightflecks at high photon flux density (PFD), the mean rate of O2 evolution was greater than the steady-state rate of O2 evolution under the same PFD due to a burst of O2 evolution at the beginning of the lightfleck. This O2 burst was taken as indicating a high level of NCET involved in the buildup of assimilatory charge via ATP, NADPH, and reduced or phosphorylated metabolites. However, as lightfleck duration decreased, the amount of CO2 assimilated per unit time of the lightfleck (the mean rate of CO2 assimilation) decreased. There was also a burst of CO2 from the leaf at the beginning of low-PFD lightflecks that further reduced the assimilation during these lightflecks. The results are discussed in terms of the buildup of assimilatory charge through the synthesis of high-energy metabolites specific to C4 metabolism. It is speculated that the inefficiency of carbon uptake during brief light transients in the C4 species, relative to C3 species, is due to the futile synthesis of C4 cycle intermediates.

11.
Plant Physiol ; 99(1): 227-34, 1992 May.
Artigo em Inglês | MEDLINE | ID: mdl-16668854

RESUMO

The temporally variable light environment of natural plant canopies presents distinct limitations to carbon assimilation, partially as a result of the photosynthetic induction requirement that develops when leaves are shaded. This study was undertaken with soybean (Glycine max L.) leaves to further identify factors contributing to the activation state of the fast component of induction during low photosynthetic photon flux density (PPFD) periods. Determination of pool sizes of carbon reduction cycle intermediates at low light and upon return to saturating light indicated that different limitations to photosynthetic activity arise over the time course of a 10-minute low PPFD period. Photosynthetic activity upon reillumination was limited by the regeneration of ribulose 1,5-P(2). There was an increase in the levels of fructose 1,6-P(2), sedoheptulose 1,7-P(2), triose-P, ribose 5-P, and ribulose 5-P pools, indicating inactivation of stromal enzymes, most notably fructose 1,6-bisphosphatase, sedoheptulose 1,7-bisphosphatase, and ribulose 5-P kinase. The fast-induction component was the most important factor limiting assimilation during rapid, brief light transients, during which the decay of the slow component was minimal. This may be particularly significant for upper leaves in soybean canopies that generally experience very rapid light transients.

12.
Trends Ecol Evol ; 6(3): 95-9, 1991 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21232434

RESUMO

Plants assimilate carbon by one of three photosynthetic pathways, commonly called the C(3), C(4), and CAM pathways. The C(4) photosynthetic pathway, found only among the angiosperms, represents a modification of C(3) metabolism that is most effective at low concentrations of CO(2). Today, C(4) plants are most common in hot, open ecosystems, and it is commonly felt that they evolved under these conditions. However, high light and high temperature, by themselves, are not sufficient to favor the evolution of C(4) photosynthesis at atmospheric CO(2) levels significantly above the current ambient values. A review of evidence suggests that C(4) plants evolved in response to a reduction in atmospheric CO(2) levels that began during the Cretaceous and continued until the Miocene.

13.
Plant Physiol ; 94(2): 628-33, 1990 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16667758

RESUMO

Photosynthetic induction state, stomatal conductance and light regulation of ribulose-1,5-bisphosphate carboxylase (rubisco) were examined for leaves in a mature, closed soybean (Glycine max) canopy (leaf area index approximately 5) with the objective to determine the extent to which these factors may be limiting the capacity to respond to light transients during sunflecks. When sampled along a vertical gradient, leaves near the bottom of the canopy had lower rubisco contents and chlorophyll a/b ratios as compared with upper leaves. Leaves sampled at midcanopy showed a wide variation in photosynthetic induction state (ratio of the photosynthetic rate achieved after 1 minute exposure to high light to the steady-state assimilation rate achieved after 20 minutes exposure). Both photosynthetic induction state and the initial rubisco activity varied in parallel with stomatal conductance. By contrast there was no correlation between total rubisco activity and stomatal conductance. The results indicate that induction state, as determined by the light regulation of both rubisco activity and stomatal conductance, is an important limitation to the ability of leaves in a soybean canopy to respond to light transients that occur during sunflecks.

14.
Plant Physiol ; 92(2): 487-94, 1990 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16667302

RESUMO

Leaves of Vitis californica Benth. (California wild grape) exposed to a photon flux density (PFD) equivalent to full sun exhibited temperature-dependent reductions in the rates or efficiencies of component photosynthetic processes. During high-PFD exposure, net CO(2) uptake, photon yield of oxygen evolution, and photosystem II chlorophyll fluorescence at 77 Kelvin (F(m), F(v), and F(v)/F(m)) were more severely inhibited at high and low temperatures than at intermediate temperatures. Sun leaves tolerated high PFD more than growth chamber-grown leaves but exhibited qualitatively similar temperature-dependent responses to high-PFD exposures. Photosystem II fluorescence and net CO(2) uptake exhibited different sensitivities to PFD and temperature. Fluorescence and gas exchange kinetics during exposure to high PFD suggested an interaction of multiple, temperature-dependent processes, involving both regulation of energy distribution and damage to photosynthetic components. Comparison of F(v)/F(m) to photon yield of oxygen evolution yielded a single, curvilinear relationship, regardless of growth condition or treatment temperature, whereas the relationship between F(m) (or F(v)) and photon yield varied with growth conditions. This indicated that F(v)/F(m) was the most reliable fluorescence indicator of PSII photochemical efficiency for leaves of different growth conditions and treatments.

15.
Oecologia ; 79(4): 475-481, 1989 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28313481

RESUMO

Gas exchange and chlorophyll fluorescence techniques were used to evaluate the hypothesis that leaf movement in Vitis californica Benth. (California wild grape) allows a compromise between sunlight interception and stress damage in order to maximize photosynthetic carbon gain over the life of the leaf. Leaves that were restrained horizontally tolerated their increased radiation loads if critical temperatures were not exceeded. Reductions in photosynthetic capacity and the F V/F M fluorescence ratio only occurred in leaves that attained high temperatures. Leaf orientation and canopy position were important determinants of leaf temperature. These results indicate that excessive leaf temperature, not high PFD, can be a principle cause of reduced carbon gain and senescence in this species in the wild. Leaf movement appears to protect photosynthetic components in midsummer.

16.
Plant Physiol ; 88(4): 1195-200, 1988 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16666442

RESUMO

Plant biotypes that are resistant to S-triazines under most conditions often grow less vigorously and have lower quantum yields and lower maximum rates of photosynthesis. The photosynthetic reactions responsible for these effects were identified in whole leaves and thylakoids of nearly isonuclear lines of oilseed rape (Brassica napus L.). The lower quantum yield was a result of poor efficiency in the use of separated charge at the photosystem II reaction center. Charge separation occurred normally, but over 30% of the charges recombined instead of being used for oxygen evolution and for reduction capacity in photosystem I. The lower maximum rate of photosynthesis in the resistant biotype was set by the transfer of electrons between the primary, Q(A), and secondary, Q(B), acceptors of photosystem II. This charge transfer reaction became rate limiting in resistant biotypes. The decreased quantum yield and decreased maximum rate of photosynthesis are both believed to be consequences of changes in the 32 kilodalton herbicide binding protein. As such, it is likely that these traits will not be genetically separable.

17.
Plant Physiol ; 88(1): 148-52, 1988 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16666256

RESUMO

The regulation of ribulose-1,5-bisphosphate (RuBP) carboxylase (Rubisco) activity and pool sizes of RuBP and P-glycerate were examined in the tropical understory species Alocasia macrorrhiza following step changes in photon flux density (PFD). Previous gas exchange analysis of this species following a step increase in PFD from 10 to 500 micromoles quanta per square meter per second suggested that the increase in photosynthetic rate was limited by the rate of increase of Rubisco activity for the first 5 to 10 minutes. We demonstrate here that the increase in photosynthetic rate was correlated with an increase in both the activation state of Rubisco and the total k(cat) (fully activated specific activity) of the enzyme. Evidence presented here suggests that a change in the pool size of the naturally occurring tight binding inhibitor of Rubisco activity, 2-carboxyarabinitol 1-phosphate, was responsible for the PFD-dependent change in the total k(cat) of the enzyme. RuBP pool size transiently increased after the increase in PFD, indicating that photosynthesis was limited by the capacity for carboxylation. After 5 to 10 minutes, RuBP pool size was again similar to the pool size at low PFD, presumably because of the increased activity of Rubisco. Following a step decrease in PFD from 500 to 10 micromoles quanta per square meter per second, Rubisco activity declined but at a much slower rate than it had increased in response to a step increase in PFD. This slower rate of activity decline than increase was apparently due to the slower rate of 2-carboxyarabinitol 1-phosphate synthesis than degradation and, to a lesser degree, to slower deactivation than activation. RuBP pool size initially declined following the decrease in PFD, indicating that RuBP regeneration was limiting photosynthesis. As Rubisco activity decreased, RuBP slowly increased to its original level at high PFD. The slow rate of activity loss by Rubisco in this species suggests a biochemical basis for the increased efficiency for CO(2) assimilation of successive lightfleck use by species such as A. macrorrhiza.

18.
Plant Physiol ; 87(4): 818-21, 1988 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16666231

RESUMO

When leaves of Alocasia macrorrhiza that had been preconditioned in 10 micromoles photons per square meter per second for at least 2 hours were suddenly exposed to 500 micromoles photons per square meter per second, there was an almost instantaneous increase in assimilation rate. After this initial increase, there was a secondary increase over the next minute. This secondary increase was more pronounced in high CO(2) (1400 microbars), where assimilation rate was assumed to be limited by the rate of regeneration of ribulose 1,5-bisphosphate (RuBP). It was absent in low CO(2) (75 microbars), where RuBP carboxylase/oxygenase (Rubisco) was assumed to be limiting. It was therefore concluded that it represented an increase in the capacity to regenerate RuBP. This fast-inducing component not only gained full induction rapidly, but also lost it rapidly in low photon flux density (PFD) with a half time of 150 to 200 seconds. It was concluded that in environments with fluctuating PFD, this fast-inducing component is an important factor in determining a leaf's potential for photosynthetic carbon gain. It is especially important during brief periods (<30 seconds) of high PFD that follow moderately long periods (1 to 10 minutes) of low PFD.

19.
Plant Physiol ; 86(3): 782-5, 1988 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16665988

RESUMO

When leaves of Alocasia macrorrhiza adapted to 10 micromole quanta per square meter per second were transferred to 500 micromole quanta per square meter per second, the rate of photosynthetic CO(2) assimilation increased for over 45 minutes. For the first 10 to 15 minutes, increases in both stomatal conductance and the leaf's photosynthetic capacity were responsible for the increase in assimilation rate. Thereafter, continuing increases in stomatal conductance were almost entirely responsible for further increases in assimilation rate. When conductances were initially high, assimilation rates 1 minute after the increase in photon flux density could be more than six times as high as for similar leaves with initially low conductance. Further increases in assimilation rate in these leaves with high conductance were predominantly due to increases in the induction state at the biochemical level and followed an exponential time course. When stomatal conductances were initially low, then increases in conductance were predominantly responsible for the increases in assimilation rate, with both following a sigmoidal time course. In these leaves, it was important to also consider the effect of cuticular water loss on the calculation of the intracellular partial pressure of CO(2), and an assessment of the relative importance of stomatal conductance differed considerably from one that did not include cuticular water loss.

20.
Planta ; 174(4): 527-33, 1988 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24221570

RESUMO

Oxygen and CO2 exchange were measured concurrently in leaves of shade-grownAlocasia macrorrhiza (L.) G. Don during lightflecks consisting of short periods of high photon flux density (PFD) superimposed on a low-PFD background illumination. Oxygen exchange was measured with a zirconium-oxide ceramic cell in an atmosphere containing 1 600 µbar O2 and 350 µbar CO2. Following an increase in PFD from 10 to 500 µmol photons·m(-2)·s(-1), O2 evolution immediately increased to a maximum rate that was about twice as high as the highest CO2-exchange rates that were observed. Oxygen evolution then decreased over the next 5-10 s to rates equal to the much more slowly increasing rates of CO2 uptake. When the PFD was decreased at the end of a lightfleck, O2 evolution decreased nearly instantaneously to the low-PFD rate while CO2 fixation continued at an elevated rate for about 20 s. When PFD during the lightfleck was at a level that was limiting for steady-state CO2 exchange, then the O2-evolution rate was constant during the lightfleck. This observed pattern of O2 evolution during lightflecks indicated that the maximum rate of electron transport exceeded the maximum rate of CO2 fixation in these leaves. In noninduced leaves, rates of O2 evolution for the first fraction of a second were about as high as rates in fully induced leaves, indicating that O2 evolution and the electron-transport chain are not directly affected by the leaf's induction state. Severalfold differences between induced and noninduced leaves in O2 evolution during a lightfleck were seen for lightflecks longer than a few seconds where the rate of O2 evolution appeared to be limited by the utilization of reducing power in CO2 fixation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...