Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurooncol Adv ; 6(1): vdae066, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38770219

RESUMO

Brain metastases remain a challenging and feared complication for patients with cancer and research in this area has lagged behind research into metastases to other organs. Due to their location and the risks associated with neurosurgical biopsies, the biology underpinning brain metastases response to treatment and evolution over time remains poorly understood. Liquid biopsies are proposed to overcome many of the limitations present with tissue biopsies, providing a better representation of tumor heterogeneity, facilitating repeated sampling, and providing a noninvasive assessment of tumor biology. Several different liquid biopsy approaches have been investigated including circulating tumor cells, circulating tumor DNA, extracellular vesicles, and tumor-educated platelets; however, these have generally been less effective in assessing brain metastases compared to metastases to other organs requiring improved techniques to investigate these approaches, studies combining different liquid biopsy approaches and/or novel liquid biopsy approaches. Through this review, we highlight the current state of the art and define key unanswered questions related to brain metastases liquid biopsies.

2.
Adv Sci (Weinh) ; 11(15): e2306027, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38353396

RESUMO

Temozolomide (TMZ) represents the cornerstone of therapy for glioblastoma (GBM). However, acquisition of resistance limits its therapeutic potential. The human kinome is an undisputable source of druggable targets, still, current knowledge remains confined to a limited fraction of it, with a multitude of under-investigated proteins yet to be characterized. Here, following a kinome-wide RNAi screen, pantothenate kinase 4 (PANK4) isuncovered as a modulator of TMZ resistance in GBM. Validation of PANK4 across various TMZ-resistant GBM cell models, patient-derived GBM cell lines, tissue samples, as well as in vivo studies, corroborates the potential translational significance of these findings. Moreover, PANK4 expression is induced during TMZ treatment, and its expression is associated with a worse clinical outcome. Furthermore, a Tandem Mass Tag (TMT)-based quantitative proteomic approach, reveals that PANK4 abrogation leads to a significant downregulation of a host of proteins with central roles in cellular detoxification and cellular response to oxidative stress. More specifically, as cells undergo genotoxic stress during TMZ exposure, PANK4 depletion represents a crucial event that can lead to accumulation of intracellular reactive oxygen species (ROS) and subsequent cell death. Collectively, a previously unreported role for PANK4 in mediating therapeutic resistance to TMZ in GBM is unveiled.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Proteômica , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral
3.
Nat Commun ; 13(1): 1731, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365638

RESUMO

Aneuploidy results in decreased cellular fitness in many species and model systems. However, aneuploidy is commonly found in cancer cells and often correlates with aggressive growth, suggesting that the impact of aneuploidy on cellular fitness is context dependent. The BRG1 (SMARCA4) subunit of the SWI/SNF chromatin remodelling complex is frequently lost in cancer. Here, we use a chromosomally stable cell line to test the effect of BRG1 loss on the evolution of aneuploidy. BRG1 deletion leads to an initial loss of fitness in this cell line that improves over time. Notably, we find increased tolerance to aneuploidy immediately upon loss of BRG1, and the fitness recovery over time correlates with chromosome gain. These data show that BRG1 loss creates an environment where karyotype changes can be explored without a fitness penalty. At least in some genetic backgrounds, therefore, BRG1 loss can affect the progression of tumourigenesis through tolerance of aneuploidy.


Assuntos
Aneuploidia , Montagem e Desmontagem da Cromatina , Linhagem Celular , Aberrações Cromossômicas , Cromossomos , DNA Helicases/genética , Humanos , Proteínas Nucleares/genética , Fatores de Transcrição/genética
4.
J Exp Biol ; 225(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35403696

RESUMO

Applications of key technologies in biomedical research, such as qRT-PCR or LC-MS-based proteomics, are generating large biological (-omics) datasets which are useful for the identification and quantification of biomarkers in any research area of interest. Genome, transcriptome and proteome databases are already available for a number of model organisms including vertebrates and invertebrates. However, there is insufficient information available for protein sequences of certain invertebrates, such as the great pond snail Lymnaea stagnalis, a model organism that has been used highly successfully in elucidating evolutionarily conserved mechanisms of memory function and dysfunction. Here, we used a bioinformatics approach to designing and benchmarking a comprehensive central nervous system (CNS) proteomics database (LymCNS-PDB) for the identification of proteins from the CNS of Lymnaea by LC-MS-based proteomics. LymCNS-PDB was created by using the Trinity TransDecoder bioinformatics tool to translate amino acid sequences from mRNA transcript assemblies obtained from a published Lymnaea transcriptomics database. The blast-style MMSeq2 software was used to match all translated sequences to UniProtKB sequences for molluscan proteins, including those from Lymnaea and other molluscs. LymCNS-PDB contains 9628 identified matched proteins that were benchmarked by performing LC-MS-based proteomics analysis with proteins isolated from the Lymnaea CNS. MS/MS analysis using the LymCNS-PDB database led to the identification of 3810 proteins. Only 982 proteins were identified by using a non-specific molluscan database. LymCNS-PDB provides a valuable tool that will enable us to perform quantitative proteomics analysis of protein interactomes involved in several CNS functions in Lymnaea, including learning and memory and age-related memory decline.


Assuntos
Biologia Computacional , Lymnaea , Animais , Benchmarking , Sistema Nervoso Central , Cromatografia Líquida , Lymnaea/genética , Proteínas/metabolismo , Espectrometria de Massas em Tandem
5.
Bioinform Adv ; 2(1): vbac084, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699394

RESUMO

Motivation: Protein-protein interaction (PPI) networks have been shown to successfully predict essential proteins. However, such networks are derived generically from experiments on many thousands of different cells. Consequently, conventional PPI networks cannot capture the variation of genetic dependencies that exists across different cell types, let alone those that emerge as a result of the massive cell restructuring that occurs during carcinogenesis. Predicting cell-specific dependencies is of considerable therapeutic benefit, facilitating the use of drugs to inhibit those proteins on which the cancer cells have become specifically dependent. In order to go beyond the limitations of the generic PPI, we have attempted to personalise PPI networks to reflect cell-specific patterns of gene expression and mutation. By using 12 topological features of the resulting PPIs, together with matched gene dependency data from DepMap, we trained random-forest classifiers (DependANT) to predict novel gene dependencies. Results: We found that DependANT improves the power of the baseline generic PPI models in predicting common gene dependencies, by up to 10.8% and is more sensitive than the baseline generic model when predicting genes on which only a small number of cell types are dependent. Availability and implementation: Software available at https://bitbucket.org/bioinformatics_lab_sussex/dependant2. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

6.
Elife ; 102021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33647232

RESUMO

BLM (Bloom syndrome protein) is a RECQ-family helicase involved in the dissolution of complex DNA structures and repair intermediates. Synthetic lethality analysis implicates BLM as a promising target in a range of cancers with defects in the DNA damage response; however, selective small molecule inhibitors of defined mechanism are currently lacking. Here, we identify and characterise a specific inhibitor of BLM's ATPase-coupled DNA helicase activity, by allosteric trapping of a DNA-bound translocation intermediate. Crystallographic structures of BLM-DNA-ADP-inhibitor complexes identify a hitherto unknown interdomain interface, whose opening and closing are integral to translocation of ssDNA, and which provides a highly selective pocket for drug discovery. Comparison with structures of other RECQ helicases provides a model for branch migration of Holliday junctions by BLM.


Assuntos
RecQ Helicases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , DNA/metabolismo , DNA Cruciforme , DNA de Cadeia Simples , Descoberta de Drogas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Escherichia coli , Ensaios de Triagem em Larga Escala , Humanos , RecQ Helicases/metabolismo
7.
J Clin Invest ; 130(6): 3188-3204, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32125284

RESUMO

As there is growing evidence for the tumor microenvironment's role in tumorigenesis, we investigated the role of fibroblast-expressed kinases in triple-negative breast cancer (TNBC). Using a high-throughput kinome screen combined with 3D invasion assays, we identified fibroblast-expressed PIK3Cδ (f-PIK3Cδ) as a key regulator of cancer progression. Although PIK3Cδ was expressed in primary fibroblasts derived from TNBC patients, it was barely detectable in breast cancer (BC) cell lines. Genetic and pharmacological gain- and loss-of-function experiments verified the contribution of f-PIK3Cδ in TNBC cell invasion. Integrated secretomics and transcriptomics analyses revealed a paracrine mechanism via which f-PIK3Cδ confers its protumorigenic effects. Inhibition of f-PIK3Cδ promoted the secretion of factors, including PLGF and BDNF, that led to upregulation of NR4A1 in TNBC cells, where it acts as a tumor suppressor. Inhibition of PIK3Cδ in an orthotopic BC mouse model reduced tumor growth only after inoculation with fibroblasts, indicating a role of f-PIK3Cδ in cancer progression. Similar results were observed in the MMTV-PyMT transgenic BC mouse model, along with a decrease in tumor metastasis, emphasizing the potential immune-independent effects of PIK3Cδ inhibition. Finally, analysis of BC patient cohorts and TCGA data sets identified f-PIK3Cδ (protein and mRNA levels) as an independent prognostic factor for overall and disease-free survival, highlighting it as a therapeutic target for TNBC.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/biossíntese , Fibroblastos/enzimologia , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/biossíntese , Neoplasias de Mama Triplo Negativas/enzimologia , Animais , Classe I de Fosfatidilinositol 3-Quinases/genética , Feminino , Fibroblastos/patologia , Xenoenxertos , Humanos , Camundongos , Camundongos Transgênicos , Invasividade Neoplásica , Metástase Neoplásica , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
8.
J Comput Biol ; 27(5): 786-795, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31460787

RESUMO

Inframe insertion and deletion mutations (indels) are commonly observed in cancer samples accounting for over 1% of all reported mutations. Few somatic inframe indels have been clinically documented as pathogenic and at present there are few tools to predict which indels drive cancer development. However, indels are a common feature of hereditary disease and several tools have been developed to predict the impact of inframe indels on protein function. In this study, we test whether six of the popular prediction tools can be adapted to test for cancer driver mutations and then develop a new algorithm (IndelRF) that discriminates between recurrent indels in known cancer genes and indels not associated with disease. IndelRF was developed to try and identify somatic, driver, and inframe indel mutations. Using a random forest classifier with 11 features, IndelRF achieved accuracies of 0.995 and 0.968 for insertion and deletion mutations, respectively. Finally, we use IndelRF to classify the inframe indel cancer mutations in the MOKCa database.


Assuntos
Biologia Computacional/métodos , Mutação INDEL/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Algoritmos , Bases de Dados Genéticas , Genoma Humano/genética , Humanos , Neoplasias/patologia , Oncogenes/genética
9.
Int J Mol Sci ; 20(22)2019 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-31744086

RESUMO

Using pan-cancer data from The Cancer Genome Atlas (TCGA), we investigated how patterns in copy number alterations in cancer cells vary both by tissue type and as a function of genetic alteration. We find that patterns in both chromosomal ploidy and individual arm copy number are dependent on tumour type. We highlight for example, the significant losses in chromosome arm 3p and the gain of ploidy in 5q in kidney clear cell renal cell carcinoma tissue samples. We find that specific gene mutations are associated with genome-wide copy number changes. Using signatures derived from non-negative factorisation, we also find gene mutations that are associated with particular patterns of ploidy change. Finally, utilising a set of machine learning classifiers, we successfully predicted the presence of mutated genes in a sample using arm-wise copy number patterns as features. This demonstrates that mutations in specific genes are correlated and may lead to specific patterns of ploidy loss and gain across chromosome arms. Using these same classifiers, we highlight which arms are most predictive of commonly mutated genes in kidney renal clear cell carcinoma (KIRC).


Assuntos
Carcinoma de Células Renais/patologia , Variações do Número de Cópias de DNA/genética , Neoplasias Renais/patologia , Área Sob a Curva , Carcinoma de Células Renais/genética , Cromossomos/genética , Humanos , Neoplasias Renais/genética , Aprendizado de Máquina , Mutação , Ploidias , Curva ROC , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética
10.
Commun Biol ; 2: 315, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31453379

RESUMO

Glioblastoma (GBM) is one of the most aggressive solid tumors for which treatment options and biomarkers are limited. Small extracellular vesicles (sEVs) produced by both GBM and stromal cells are central in the inter-cellular communication that is taking place in the tumor bulk. As tumor sEVs are accessible in biofluids, recent reports have suggested that sEVs contain valuable biomarkers for GBM patient diagnosis and follow-up. The aim of the current study was to describe the protein content of sEVs produced by different GBM cell lines and patient-derived stem cells. Our results reveal that the content of the sEVs mirrors the phenotypic signature of the respective GBM cells, leading to the description of potential informative sEV-associated biomarkers for GBM subtyping, such as CD44. Overall, these data could assist future GBM in vitro studies and provide insights for the development of new diagnostic and therapeutic methods as well as personalized treatment strategies.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/metabolismo , Vesículas Extracelulares/metabolismo , Glioblastoma/classificação , Glioblastoma/metabolismo , Astrócitos/metabolismo , Astrócitos/patologia , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Vesículas Extracelulares/ultraestrutura , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Invasividade Neoplásica
11.
PLoS Comput Biol ; 15(4): e1006888, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30995217

RESUMO

In response to a need for improved treatments, a number of promising novel targeted cancer therapies are being developed that exploit human synthetic lethal interactions. This is facilitating personalised medicine strategies in cancers where specific tumour suppressors have become inactivated. Mainly due to the constraints of the experimental procedures, relatively few human synthetic lethal interactions have been identified. Here we describe SLant (Synthetic Lethal analysis via Network topology), a computational systems approach to predicting human synthetic lethal interactions that works by identifying and exploiting conserved patterns in protein interaction network topology both within and across species. SLant out-performs previous attempts to classify human SSL interactions and experimental validation of the models predictions suggests it may provide useful guidance for future SSL screenings and ultimately aid targeted cancer therapy development.


Assuntos
Mapas de Interação de Proteínas/genética , Mutações Sintéticas Letais , Algoritmos , Animais , Inteligência Artificial , Biologia Computacional , Descoberta de Drogas , Ontologia Genética , Genes Essenciais , Humanos , Modelos Biológicos , Terapia de Alvo Molecular , Família Multigênica , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia , Mapeamento de Interação de Proteínas/estatística & dados numéricos , Mapas de Interação de Proteínas/efeitos dos fármacos , Biologia Sintética , Mutações Sintéticas Letais/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
12.
Mol Cell ; 73(2): 212-223.e7, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30554942

RESUMO

Cohesin subunits are frequently mutated in cancer, but how they function as tumor suppressors is unknown. Cohesin mediates sister chromatid cohesion, but this is not always perturbed in cancer cells. Here, we identify a previously unknown role for cohesin. We find that cohesin is required to repress transcription at DNA double-strand breaks (DSBs). Notably, cohesin represses transcription at DSBs throughout interphase, indicating that this is distinct from its known role in mediating DNA repair through sister chromatid cohesion. We identified a cancer-associated SA2 mutation that supports sister chromatid cohesion but is unable to repress transcription at DSBs. We further show that failure to repress transcription at DSBs leads to large-scale genome rearrangements. Cancer samples lacking SA2 display mutational patterns consistent with loss of this pathway. These findings uncover a new function for cohesin that provides insights into its frequent loss in cancer.


Assuntos
Neoplasias Ósseas/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Quebras de DNA de Cadeia Dupla , Instabilidade Genômica , Interfase , Osteossarcoma/genética , Transcrição Gênica , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Reparo do DNA , Regulação para Baixo , Fase G1 , Fase G2 , Regulação Neoplásica da Expressão Gênica , Humanos , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Coesinas
13.
Genome Med ; 9(1): 113, 2017 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-29254494

RESUMO

The translation of personal genomics to precision medicine depends on the accurate interpretation of the multitude of genetic variants observed for each individual. However, even when genetic variants are predicted to modify a protein, their functional implications may be unclear. Many diseases are caused by genetic variants affecting important protein features, such as enzyme active sites or interaction interfaces. The scientific community has catalogued millions of genetic variants in genomic databases and thousands of protein structures in the Protein Data Bank. Mapping mutations onto three-dimensional (3D) structures enables atomic-level analyses of protein positions that may be important for the stability or formation of interactions; these may explain the effect of mutations and in some cases even open a path for targeted drug development. To accelerate progress in the integration of these data types, we held a two-day Gene Variation to 3D (GVto3D) workshop to report on the latest advances and to discuss unmet needs. The overarching goal of the workshop was to address the question: what can be done together as a community to advance the integration of genetic variants and 3D protein structures that could not be done by a single investigator or laboratory? Here we describe the workshop outcomes, review the state of the field, and propose the development of a framework with which to promote progress in this arena. The framework will include a set of standard formats, common ontologies, a common application programming interface to enable interoperation of the resources, and a Tool Registry to make it easy to find and apply the tools to specific analysis problems. Interoperability will enable integration of diverse data sources and tools and collaborative development of variant effect prediction methods.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Polimorfismo Genético , Conformação Proteica , Análise de Sequência de Proteína/métodos , Algoritmos , Congressos como Assunto , Estudo de Associação Genômica Ampla/normas , Humanos , Análise de Sequência de Proteína/normas
14.
J Integr Bioinform ; 14(3)2017 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-28941356

RESUMO

The development of improved cancer therapies is frequently cited as an urgent unmet medical need. Here we describe how genetic interactions are being therapeutically exploited to identify novel targeted treatments for cancer. We discuss the current methodologies that use 'omics data to identify genetic interactions, in particular focusing on synthetic sickness lethality (SSL) and synthetic dosage lethality (SDL). We describe the experimental and computational approaches undertaken both in humans and model organisms to identify these interactions. Finally we discuss some of the identified targets with licensed drugs, inhibitors in clinical trials or with compounds under development.


Assuntos
Simulação por Computador , Redes Reguladoras de Genes/efeitos dos fármacos , Terapia de Alvo Molecular , Neoplasias/genética , Neoplasias/terapia , Animais , Humanos , Aprendizado de Máquina
15.
Expert Opin Drug Discov ; 12(6): 599-609, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28462602

RESUMO

INTRODUCTION: The development of improved cancer therapies is frequently cited as an urgent unmet medical need. Recent advances in platform technologies and the increasing availability of biological 'big data' are providing an unparalleled opportunity to systematically identify the key genes and pathways involved in tumorigenesis. The discoveries made using these new technologies may lead to novel therapeutic interventions. Areas covered: The authors discuss the current approaches that use 'big data' to identify cancer drivers. These approaches include the analysis of genomic sequencing data, pathway data, multi-platform data, identifying genetic interactions such as synthetic lethality and using cell line data. They review how big data is being used to identify novel drug targets. The authors then provide an overview of the available data repositories and tools being used at the forefront of cancer drug discovery. Expert opinion: Targeted therapies based on the genomic events driving the tumour will eventually inform treatment protocols. However, using a tailored approach to treat all tumour patients may require developing a large repertoire of targeted drugs.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas/métodos , Neoplasias/tratamento farmacológico , Linhagem Celular , Desenho de Fármacos , Genômica/métodos , Humanos , Terapia de Alvo Molecular , Neoplasias/patologia
16.
Biosci Rep ; 37(4)2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28487472

RESUMO

Bioinformatics approaches are becoming ever more essential in translational drug discovery both in academia and within the pharmaceutical industry. Computational exploitation of the increasing volumes of data generated during all phases of drug discovery is enabling key challenges of the process to be addressed. Here, we highlight some of the areas in which bioinformatics resources and methods are being developed to support the drug discovery pipeline. These include the creation of large data warehouses, bioinformatics algorithms to analyse 'big data' that identify novel drug targets and/or biomarkers, programs to assess the tractability of targets, and prediction of repositioning opportunities that use licensed drugs to treat additional indications.


Assuntos
Biologia Computacional/métodos , Descoberta de Drogas/métodos , Animais , Biologia Computacional/instrumentação , Descoberta de Drogas/instrumentação , Humanos
17.
Oncotarget ; 8(13): 21290-21304, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28423505

RESUMO

BACKGROUND: The key to interpreting the contribution of a disease-associated mutation in the development and progression of cancer is an understanding of the consequences of that mutation both on the function of the affected protein and on the pathways in which that protein is involved. Protein domains encapsulate function and position-specific domain based analysis of mutations have been shown to help elucidate their phenotypes. RESULTS: In this paper we examine the domain biases in oncogenes and tumour suppressors, and find that their domain compositions substantially differ. Using data from over 30 different cancers from whole-exome sequencing cancer genomic projects we mapped over one million mutations to their respective Pfam domains to identify which domains are enriched in any of three different classes of mutation; missense, indels or truncations. Next, we identified the mutational hotspots within domain families by mapping small mutations to equivalent positions in multiple sequence alignments of protein domainsWe find that gain of function mutations from oncogenes and loss of function mutations from tumour suppressors are normally found in different domain families and when observed in the same domain families, hotspot mutations are located at different positions within the multiple sequence alignment of the domain. CONCLUSIONS: By considering hotspots in tumour suppressors and oncogenes independently, we find that there are different specific positions within domain families that are particularly suited to accommodate either a loss or a gain of function mutation. The position is also dependent on the class of mutation.We find rare mutations co-located with well-known functional mutation hotspots, in members of homologous domain superfamilies, and we detect novel mutation hotspots in domain families previously unconnected with cancer. The results of this analysis can be accessed through the MOKCa database (http://strubiol.icr.ac.uk/extra/MOKCa).


Assuntos
Análise Mutacional de DNA/métodos , Genes Supressores de Tumor , Mutação/genética , Neoplasias/genética , Oncogenes/genética , Biologia Computacional/métodos , Humanos , Modelos Moleculares
18.
Oncotarget ; 7(44): 71182-71197, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27563826

RESUMO

MASTL (microtubule-associated serine/threonine kinase-like), more commonly known as Greatwall (GWL), has been proposed as a novel cancer therapy target. GWL plays a crucial role in mitotic progression, via its known substrates ENSA/ARPP19, which when phosphorylated inactivate PP2A/B55 phosphatase. When over-expressed in breast cancer, GWL induces oncogenic properties such as transformation and invasiveness. Conversely, down-regulation of GWL selectively sensitises tumour cells to chemotherapy. Here we describe the first structure of the GWL minimal kinase domain and development of a small-molecule inhibitor GKI-1 (Greatwall Kinase Inhibitor-1). In vitro, GKI-1 inhibits full-length human GWL, and shows cellular efficacy. Treatment of HeLa cells with GKI-1 reduces ENSA/ARPP19 phosphorylation levels, such that they are comparable to those obtained by siRNA depletion of GWL; resulting in a decrease in mitotic events, mitotic arrest/cell death and cytokinesis failure. Furthermore, GKI-1 will be a useful starting point for the development of more potent and selective GWL inhibitors.


Assuntos
Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Cristalização , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/química , Fosforilação , Domínios Proteicos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/química , Relação Estrutura-Atividade
19.
Biochem Soc Trans ; 44(3): 925-31, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27284061

RESUMO

All cancers depend upon mutations in critical genes, which confer a selective advantage to the tumour cell. Knowledge of these mutations is crucial to understanding the biology of cancer initiation and progression, and to the development of targeted therapeutic strategies. The key to understanding the contribution of a disease-associated mutation to the development and progression of cancer, comes from an understanding of the consequences of that mutation on the function of the affected protein, and the impact on the pathways in which that protein is involved. In this paper we examine the mutation patterns observed in oncogenes and tumour suppressors, and discuss different approaches that have been developed to identify driver mutations within cancers that contribute to the disease progress. We also discuss the MOKCa database where we have developed an automatic pipeline that structurally and functionally annotates all proteins from the human proteome that are mutated in cancer.


Assuntos
Carcinogênese/genética , Genes Supressores de Tumor/ética , Mutação , Oncogenes/genética , Humanos
20.
Front Genet ; 7: 52, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27092175

RESUMO

Impulsivity is associated with a spectrum of psychiatric disorders including drug addiction. To investigate genetic associations with impulsivity and initiation of drug taking, we took a two-step approach. First, we identified genes whose expression level in prefrontal cortex, striatum and accumbens were associated with impulsive behavior in the 5-choice serial reaction time task across 10 BXD recombinant inbred (BXD RI) mouse strains and their progenitor C57BL/6J and DBA2/J strains. Behavioral data were correlated with regional gene expression using GeneNetwork (www.genenetwork.org), to identify 44 genes whose probability of association with impulsivity exceeded a false discovery rate of < 0.05. We then interrogated the IMAGEN database of 1423 adolescents for potential associations of SNPs in human homologs of those genes identified in the mouse study, with brain activation during impulsive performance in the Monetary Incentive Delay task, and with novelty seeking scores from the Temperament and Character Inventory, as well as alcohol experience. There was a significant overall association between the human homologs of impulsivity-related genes and percentage of premature responses in the MID task and with fMRI BOLD-response in ventral striatum (VS) during reward anticipation. In contrast, no significant association was found between the polygenic scores and anterior cingulate cortex activation. Univariate association analyses revealed that the G allele (major) of the intronic SNP rs6438839 in the KALRN gene was significantly associated with increased VS activation. Additionally, the A-allele (minor) of KALRN intronic SNP rs4634050, belonging to the same haplotype block, was associated with increased frequency of binge drinking.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...