Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Immunol ; 9(94): eadh2334, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669316

RESUMO

T cells are often absent from human cancer tissues during both spontaneously induced immunity and therapeutic immunotherapy, even in the presence of a functional T cell-recruiting chemokine system, suggesting the existence of T cell exclusion mechanisms that impair infiltration. Using a genome-wide in vitro screening platform, we identified a role for phospholipase A2 group 10 (PLA2G10) protein in T cell exclusion. PLA2G10 up-regulation is widespread in human cancers and is associated with poor T cell infiltration in tumor tissues. PLA2G10 overexpression in immunogenic mouse tumors excluded T cells from infiltration, resulting in resistance to anti-PD-1 immunotherapy. PLA2G10 can hydrolyze phospholipids into small lipid metabolites, thus inhibiting chemokine-mediated T cell mobility. Ablation of PLA2G10's enzymatic activity enhanced T cell infiltration and sensitized PLA2G10-overexpressing tumors to immunotherapies. Our study implicates a role for PLA2G10 in T cell exclusion from tumors and suggests a potential target for cancer immunotherapy.


Assuntos
Neoplasias , Linfócitos T , Regulação para Cima , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Fosfolipases A/imunologia , Fosfolipases A/genética , Fosfolipases A2/imunologia , Linfócitos T/imunologia , Regulação para Cima/imunologia
2.
J Chromatogr A ; 1708: 464342, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696124

RESUMO

The importance of lipids seen in studies of metabolism, cancer, the recent COVID-19 pandemic and other diseases has brought the field of lipidomics to the forefront of clinical research. Quantitative and comprehensive analysis is required to understand biological interactions among lipid species. However, lipidomic analysis is often challenging due to the various compositional structures, diverse physicochemical properties, and wide dynamic range of concentrations of lipids in biological systems. To study the comprehensive lipidome, a hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS)-based screening method with 1200 lipid features across 19 (sub)classes, including both nonpolar and polar lipids, has been developed. HILIC-MS/MS was selected due to its class separation property and fatty acyl chain level information. 3D models of class chromatographic retention behavior were established and evaluations of cross-class and within-class interferences were performed to avoid over-reporting these features. This targeted HILIC-MS/MS method was fully validated, with acceptable analytical parameters in terms of linearity, precision, reproducibility, and recovery. The accurate quantitation of 608 lipid species in the SRM 1950 NIST plasma was achieved using multi-internal standards per class and post-hoc correction, extending current databases by providing lipid concentrations resolved at fatty acyl chain level. The overall correlation coefficients (R2) of measured concentrations with values from literature range from 0.64 to 0.84. The applicability of the developed targeted lipidomics method was demonstrated by discovering 520 differential lipid features related to COVID-19 severity. This high coverage and targeted approach will aid in future investigations of the lipidome in various disease contexts.


Assuntos
COVID-19 , Lipidômica , Humanos , Espectrometria de Massas em Tandem , Pandemias , Reprodutibilidade dos Testes , Cromatografia Líquida , Gravidade do Paciente , Lipídeos
3.
Elife ; 122023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36951533

RESUMO

Reactive oxygen species (ROS) accumulation is a cardinal feature of skeletal muscle atrophy. ROS refers to a collection of radical molecules whose cellular signals are vast, and it is unclear which downstream consequences of ROS are responsible for the loss of muscle mass and strength. Here, we show that lipid hydroperoxides (LOOH) are increased with age and disuse, and the accumulation of LOOH by deletion of glutathione peroxidase 4 (GPx4) is sufficient to augment muscle atrophy. LOOH promoted atrophy in a lysosomal-dependent, proteasomal-independent manner. In young and old mice, genetic and pharmacological neutralization of LOOH or their secondary reactive lipid aldehydes robustly prevented muscle atrophy and weakness, indicating that LOOH-derived carbonyl stress mediates age- and disuse-induced muscle dysfunction. Our findings provide novel insights for the role of LOOH in sarcopenia including a therapeutic implication by pharmacological suppression.


Assuntos
Sarcopenia , Camundongos , Animais , Sarcopenia/patologia , Peróxidos Lipídicos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Músculo Esquelético/metabolismo , Estresse Oxidativo
4.
Front Plant Sci ; 13: 1038161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438089

RESUMO

The lipidome comprises the total content of molecular species of each lipid class, and is measured using the analytical techniques of lipidomics. Many liquid chromatography-mass spectrometry (LC-MS) methods have previously been described to characterize the lipidome. However, many lipidomic approaches may not fully uncover the subtleties of lipid molecular species, such as the full fatty acid (FA) composition of certain lipid classes. Here, we describe a stepwise targeted lipidomics approach to characterize the polar and non-polar lipid classes using complementary LC-MS methods. Our "polar" method measures 260 molecular species across 12 polar lipid classes, and is performed using hydrophilic interaction chromatography (HILIC) on a NH2 column to separate lipid classes by their headgroup. Our "non-polar" method measures 254 molecular species across three non-polar lipid classes, separating molecular species on their FA characteristics by reverse phase (RP) chromatography on a C30 column. Five different extraction methods were compared, with an MTBE-based extraction chosen for the final lipidomics workflow. A state-of-the-art strategy to determine and relatively quantify the FA composition of triacylglycerols is also described. This lipidomics workflow was applied to developing, mature, and germinated pennycress seeds/seedlings and found unexpected changes among several lipid molecular species. During development, diacylglycerols predominantly contained long chain length FAs, which contrasted with the very long chain FAs of triacylglycerols in mature seeds. Potential metabolic explanations are discussed. The lack of very long chain fatty acids in diacylglycerols of germinating seeds may indicate very long chain FAs, such as erucic acid, are preferentially channeled into beta-oxidation for energy production.

5.
Anal Chem ; 93(49): 16369-16378, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34859676

RESUMO

Modern biomarker and translational research as well as personalized health care studies rely heavily on powerful omics' technologies, including metabolomics and lipidomics. However, to translate metabolomics and lipidomics discoveries into a high-throughput clinical setting, standardization is of utmost importance. Here, we compared and benchmarked a quantitative lipidomics platform. The employed Lipidyzer platform is based on lipid class separation by means of differential mobility spectrometry with subsequent multiple reaction monitoring. Quantitation is achieved by the use of 54 deuterated internal standards and an automated informatics approach. We investigated the platform performance across nine laboratories using NIST SRM 1950-Metabolites in Frozen Human Plasma, and three NIST Candidate Reference Materials 8231-Frozen Human Plasma Suite for Metabolomics (high triglyceride, diabetic, and African-American plasma). In addition, we comparatively analyzed 59 plasma samples from individuals with familial hypercholesterolemia from a clinical cohort study. We provide evidence that the more practical methyl-tert-butyl ether extraction outperforms the classic Bligh and Dyer approach and compare our results with two previously published ring trials. In summary, we present standardized lipidomics protocols, allowing for the highly reproducible analysis of several hundred human plasma lipids, and present detailed molecular information for potentially disease relevant and ethnicity-related materials.


Assuntos
Laboratórios , Lipidômica , Estudos de Coortes , Humanos , Padrões de Referência , Análise Espectral
6.
J Am Soc Mass Spectrom ; 32(11): 2655-2663, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34637296

RESUMO

Differential mobility spectrometry (DMS) is highly useful for shotgun lipidomic analysis because it overcomes difficulties in measuring isobaric species within a complex lipid sample and allows for acyl tail characterization of phospholipid species. Despite these advantages, the resulting workflow presents technical challenges, including the need to tune the DMS before every batch to update compensative voltages settings within the method. The Sciex Lipidyzer platform uses a Sciex 5500 QTRAP with a DMS (SelexION), an LC system configured for direction infusion experiments, an extensive set of standards designed for quantitative lipidomics, and a software package (Lipidyzer Workflow Manager) that facilitates the workflow and rapidly analyzes the data. Although the Lipidyzer platform remains very useful for DMS-based shotgun lipidomics, the software is no longer updated for current versions of Analyst and Windows. Furthermore, the software is fixed to a single workflow and cannot take advantage of new lipidomics standards or analyze additional lipid species. To address this multitude of issues, we developed Shotgun Lipidomics Assistant (SLA), a Python-based application that facilitates DMS-based lipidomics workflows. SLA provides the user with flexibility in adding and subtracting lipid and standard MRMs. It can report quantitative lipidomics results from raw data in minutes, comparable to the Lipidyzer software. We show that SLA facilitates an expanded lipidomics analysis that measures over 1450 lipid species across 17 (sub)classes. Lastly, we demonstrate that the SLA performs isotope correction, a feature that was absent from the original software.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Lipidômica/métodos , Animais , Análise de Injeção de Fluxo , Lipídeos/análise , Lipídeos/química , Macrófagos , Camundongos , Software , Fluxo de Trabalho
7.
Rapid Commun Mass Spectrom ; 34(22): e8911, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32738001

RESUMO

RATIONALE: The Lipidyzer platform was recently updated on a SCIEX QTRAP 6500+ mass spectrometer and offers a targeted lipidomics assay including 1150 different lipids. We evaluated this targeted approach using human plasma samples and compared the results against a global untargeted lipidomics method using a high-resolution Q Exactive HF Orbitrap mass spectrometer. METHODS: Lipids from human plasma samples (N = 5) were extracted using a modified Bligh-Dyer approach. A global untargeted analysis was performed using a Thermo Orbitrap Q Exactive HF mass spectrometer, followed by data analysis using Progenesis QI software. Multiple reaction monitoring (MRM)-based targeted analysis was performed using a QTRAP 6500+ mass spectrometer, followed by data analysis using SCIEX OS software. The samples were injected on three separate days to assess reproducibility for both approaches. RESULTS: Overall, 465 lipids were identified from 11 lipid classes in both approaches, of which 159 were similar between the methods, 168 lipids were unique to the MRM approach, and 138 lipids were unique to the untargeted approach. Phosphatidylcholine and phosphatidylethanolamine species were the most commonly identified using the untargeted approach, while triacylglycerol species were the most commonly identified using the targeted MRM approach. The targeted MRM approach had more consistent relative abundances across the three days than the untargeted approach. Overall, the coefficient of variation for inter-day comparisons across all lipid classes was ∼ 23% for the untargeted approach and ∼ 9% for the targeted MRM approach. CONCLUSIONS: The targeted MRM approach identified similar numbers of lipids to a conventional untargeted approach, but had better representation of 11 lipid classes commonly identified by both approaches. Based on the separation methods employed, the conventional untargeted approach could better detect phosphatidylcholine and sphingomyelin lipid classes. The targeted MRM approach had lower inter-day variability than the untargeted approach when tested using a small group of plasma samples. These studies highlight the advantages in using targeted MRM approaches for human plasma lipidomics analysis.


Assuntos
Lipidômica/métodos , Lipídeos/sangue , Espectrometria de Massas em Tandem/métodos , Idoso , Cromatografia Líquida , Feminino , Humanos , Masculino , Fosfatidilcolinas/sangue , Reprodutibilidade dos Testes , Software , Triglicerídeos/sangue
8.
Science ; 365(6451): 386-392, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31273070

RESUMO

Ceramides contribute to the lipotoxicity that underlies diabetes, hepatic steatosis, and heart disease. By genetically engineering mice, we deleted the enzyme dihydroceramide desaturase 1 (DES1), which normally inserts a conserved double bond into the backbone of ceramides and other predominant sphingolipids. Ablation of DES1 from whole animals or tissue-specific deletion in the liver and/or adipose tissue resolved hepatic steatosis and insulin resistance in mice caused by leptin deficiency or obesogenic diets. Mechanistic studies revealed ceramide actions that promoted lipid uptake and storage and impaired glucose utilization, none of which could be recapitulated by (dihydro)ceramides that lacked the critical double bond. These studies suggest that inhibition of DES1 may provide a means of treating hepatic steatosis and metabolic disorders.


Assuntos
Ceramidas/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Resistência à Insulina/genética , Proteínas de Membrana/genética , Oxirredutases/genética , Animais , Ceramidas/química , Ceramidas/genética , Dieta Hiperlipídica/efeitos adversos , Deleção de Genes , Leptina/deficiência , Camundongos , Camundongos Mutantes , Esfingolipídeos/química , Esfingolipídeos/metabolismo
9.
Cell Rep ; 22(7): 1760-1773, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29444429

RESUMO

The antidiabetic potential of glucagon receptor antagonism presents an opportunity for use in an insulin-centric clinical environment. To investigate the metabolic effects of glucagon receptor antagonism in type 2 diabetes, we treated Leprdb/db and Lepob/ob mice with REMD 2.59, a human monoclonal antibody and competitive antagonist of the glucagon receptor. As expected, REMD 2.59 suppresses hepatic glucose production and improves glycemia. Surprisingly, it also enhances insulin action in both liver and skeletal muscle, coinciding with an increase in AMP-activated protein kinase (AMPK)-mediated lipid oxidation. Furthermore, weekly REMD 2.59 treatment over a period of months protects against diabetic cardiomyopathy. These functional improvements are not derived simply from correcting the systemic milieu; nondiabetic mice with cardiac-specific overexpression of lipoprotein lipase also show improvements in contractile function after REMD 2.59 treatment. These observations suggest that hyperglucagonemia enables lipotoxic conditions, allowing the development of insulin resistance and cardiac dysfunction during disease progression.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Glucose/metabolismo , Coração/fisiopatologia , Receptores de Glucagon/antagonistas & inibidores , Adenilato Quinase/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Cardiomiopatias Diabéticas/complicações , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/prevenção & controle , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Gluconeogênese/efeitos dos fármacos , Teste de Tolerância a Glucose , Hiperglicemia/complicações , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Insulina/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/toxicidade , Fígado/metabolismo , Camundongos , Receptores de Glucagon/metabolismo
10.
Elife ; 62017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28722653

RESUMO

Visceral adiposity confers significant risk for developing metabolic disease in obesity whereas preferential expansion of subcutaneous white adipose tissue (WAT) appears protective. Unlike subcutaneous WAT, visceral WAT is resistant to adopting a protective thermogenic phenotype characterized by the accumulation of Ucp1+ beige/BRITE adipocytes (termed 'browning'). In this study, we investigated the physiological consequences of browning murine visceral WAT by selective genetic ablation of Zfp423, a transcriptional suppressor of the adipocyte thermogenic program. Zfp423 deletion in fetal visceral adipose precursors (Zfp423loxP/loxP; Wt1-Cre), or adult visceral white adipose precursors (PdgfrbrtTA; TRE-Cre; Zfp423loxP/loxP), results in the accumulation of beige-like thermogenic adipocytes within multiple visceral adipose depots. Thermogenic visceral WAT improves cold tolerance and prevents and reverses insulin resistance in obesity. These data indicate that beneficial visceral WAT browning can be engineered by directing visceral white adipocyte precursors to a thermogenic adipocyte fate, and suggest a novel strategy to combat insulin resistance in obesity.


Assuntos
Adipócitos Brancos/fisiologia , Diferenciação Celular , Resistência à Insulina , Camundongos Obesos , Células-Tronco/fisiologia , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/fisiologia , Animais , Proteínas de Ligação a DNA/deficiência , Termogênese , Fatores de Transcrição/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA