Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38862755

RESUMO

Allergic disease is a major global health concern that imposes significant life-altering and economic burdens on affected individuals. However, there is still no cure. Polymer-based nanoparticles (NP) have shown the potential to induce antigen (Ag)-specific immune tolerance in various Th1/17 and Th2-mediated immune disorders including autoimmunity and allergy. Common methods by which Ags are associated with NPs are through surface conjugation or encapsulation. However, these Ag delivery strategies can be associated with several caveats that dampen their effectiveness such as uncontrolled Ag loading, a high Ag burst release, and an increased immune recognition profile. We previously developed Ag-polymer conjugate NPs (acNPs) to overcome those noted limitations, while allowing for controlled delivery of precise quantities of Ag to innate immune cells for Ag-specific CD4 T cell modulation. Here, we utilized ovalbumin (OVA) protein-poly(lactic-co-glycolic acid) (PLGA) conjugate NPs (acNP-OVA) to elucidate the impact of Ag loading on the induction of Th2 tolerance using a prophylactic and therapeutic OVA/ALUM-induced mouse model of allergic lung inflammation (ALI) in comparison to Ag-encapsulated PLGA NPs (NP(Ag)). We demonstrate that acNP-OVA formulations reduced OVA-specific IgE and inhibited Th2 cytokine secretions in an Ag loading-dependent manner when administered prophylactically. Administration of acNP-OVA to pre-sensitized mice did not affect OVA-specific IgE and Th2 cytokines tended to be reduced, however, there was no clear Ag loading dependency. acNP-OVA with medium-to-low Ag loadings were well tolerated, while formulations with high Ag loadings, including NP(Ag) resulted in anaphylaxis. Overall, our results clarify the relationship between Ag loading and Ag-specific IgE and Th2 cytokine responses in a murine model of ALI, which provides insight useful for future design of tolerogenic NP-based immunotherapies.

2.
Bioeng Transl Med ; 9(1): e10611, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38193117

RESUMO

Excessive immune activation and immunosuppression are opposing factors that contribute to the dysregulated innate and adaptive immune responses seen in severe inflammation and sepsis. Here, a novel analog of the histone deacetylase inhibitor (HDACi), suberoylanilide hydroxamic acid (SAHA-OH), was incorporated into immunomodulatory poly(lactic acid)-based nanoparticles (iNP-SAHA) by employing a prodrug approach through the covalent modification of poly(lactic-co-glycolic acid) (PLGA) with SAHA-OH. iNP-SAHA formulation allowed for controlled incorporation and delivery of SAHA-OH from iNP-SAHA and treatment led to multimodal biological responses including significant reductions in proinflammatory cytokine secretions and gene expression, while increasing the survival of primary macrophages under lipopolysaccharide (LPS) challenge. Using a lethal LPS-induced endotoxemia mouse model of sepsis, iNP-SAHA administration improved the survival of mice in a dose-dependent manner and tended to improve survival at the lowest doses compared to iNP control. Further, iNP-SAHA reduced the levels of plasma proinflammatory cytokines and chemokines associated with sepsis more significantly than iNP and similarly improved inflammation-induced spleen and liver toxicity as iNP, supporting its potential polypharmacological activity. Collectively, iNP-SAHA offers a potential drug delivery approach to modulate the multifaceted inflammatory responses observed in diseases such as sepsis.

3.
Adv Drug Deliv Rev ; 203: 115141, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37980950

RESUMO

The prevalence of immune-mediated disorders, including autoimmune conditions and allergies, is steadily increasing. However, current therapeutic approaches are often non-specific and do not address the underlying pathogenic condition, often resulting in impaired immunity and a state of generalized immunosuppression. The emergence of technologies capable of selectively inhibiting aberrant immune activation in a targeted, antigen (Ag)-specific manner by exploiting the body's intrinsic tolerance pathways, all without inducing adverse side effects, holds significant promise to enhance patient outcomes. In this review, we will describe the body's natural mechanisms of central and peripheral tolerance as well as innovative delivery strategies using cells and biomaterials targeting innate and adaptive immune cells to promote Ag-specific immune tolerance. Additionally, we will discuss the challenges and future opportunities that warrant consideration as we navigate the path toward clinical implementation of tolerogenic strategies to treat immune-mediated diseases.


Assuntos
Materiais Biocompatíveis , Hipersensibilidade , Humanos , Tolerância Imunológica , Antígenos , Terapia de Imunossupressão/métodos
4.
Sci Total Environ ; 904: 166357, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37595913

RESUMO

Mangrove forests support unique biodiversity and provide a suite of ecosystem services (ES) that benefit people. Decades of continual mangrove loss and degradation have necessitated global efforts to protect and restore this important ecosystem. Generating and evaluating asset maps of biodiversity and ES is an important precursor to identifying locations that can deliver conservation outcomes across varying scales, such as maximising the co-occurrence of specific ES. We bring together global datasets on mangrove-affiliated biodiversity, carbon stocks, fish and invertebrate production, and coastal protection to provide insight into potential trade-offs, synergies and opportunities from mangrove conservation. We map opportunities where high ES provision co-occurs with these areas that could be leveraged in conservation planning, and identify potential high-value opportunities for single ES that might otherwise be missed with a biodiversity focus. Hotspots of single ES, co-occurrence of multiple ES, and opportunities to simultaneously leverage biodiversity and ES occurred throughout the world. For example, efforts that focus on conserving or restoring mangroves to store carbon can be targed to deliver multiple ES benefits. Some nations, such as Vietnam, Oman, Ecuador and China, showed consistent (although not necessarily strong) correlations between ES pairs. A lack of clear or consistent spatial trends elsewhere suggests that some nations will likely benefit more from complementarity-based approaches that focus on multiple sites with high provision of different services. Individual sites within these nations, however, such as Laguna de Terminos in Mexico still provide valuable opportunities to leverage co-benefits. Ensuring that an ES focused approach is complemented by strategic spatial planning is a priority, and our analyses provide a precursor towards decisions about where and how to invest.


Assuntos
Carbono , Ecossistema , Humanos , Animais , Conservação dos Recursos Naturais , Biodiversidade , Invertebrados
5.
ACS Appl Bio Mater ; 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37219857

RESUMO

Antigen-presenting cells (APCs) are widely studied for treating immune-mediated diseases, and dendritic cells (DCs) are potent APCs that uptake and present antigens (Ags). However, DCs face several challenges that hinder their clinical translation due to their inability to control Ag dosing and low abundance in peripheral blood. B cells are a potential alternative to DCs, but their poor nonspecific Ag uptake capabilities compromise controllable priming of T cells. Here, we developed phospholipid-conjugated Ags (L-Ags) and lipid-polymer hybrid nanoparticles (L/P-Ag NPs) as delivery platforms to expand the range of accessible APCs for use in T cell priming. These delivery platforms were evaluated using DCs, CD40-activated B cells, and resting B cells to understand the impacts of various Ag delivery mechanisms for generation of Ag-specific T cell responses. L-Ag delivery (termed depoting) of MHC class I- and II-restricted Ags successfully loaded all APC types in a tunable manner and primed both Ag-specific CD8+ and CD4+ T cells, respectively. Incorporating L-Ags and polymer-conjugated Ags (P-Ag) into NPs can direct Ags to different uptake pathways to engineer the dynamics of presentation and shape T cell responses. DCs were capable of processing and presenting Ag delivered from both L- and P-Ag NPs, yet B cells could only utilize Ag delivered from L-Ag NPs, which led to differential cytokine secretion profiles in coculture studies. Altogether, we show that L-Ags and P-Ags can be rationally paired within a single NP to leverage distinct delivery mechanisms to access multiple Ag processing pathways in two APC types, offering a modular delivery platform for engineering Ag-specific immunotherapies.

7.
Biotechnol Bioeng ; 120(1): 284-296, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36221192

RESUMO

Immune-mediated hypersensitivities such as autoimmunity, allergy, and allogeneic graft rejection are treated with therapeutics that suppress the immune system, and the lack of specificity is associated with significant side effects. The delivery of disease-relevant antigens (Ags) by carrier systems such as poly(lactide-co-glycolide) nanoparticles (PLG-Ag) and carbodiimide (ECDI)-fixed splenocytes (SP-Ag) has demonstrated Ag-specific tolerance induction in model systems of these diseases. Despite therapeutic outcomes by both platforms, tolerance is conferred with different efficacy. This investigation evaluated Ag loading and total particle dose of PLG-Ag on Ag presentation in a coculture system of dendritic cells (DCs) and Ag-restricted T cells, with SP-Ag employed as a control. CD25 expression was observed in nearly all T cells even at low concentrations of PLG-Ag, indicating efficient presentation of Ag by dendritic cells. However, the secretion of IL-2, Th1, and Th2 cytokines (IFNγ and IL-4, respectively) varied depending on PLG-Ag concentration and Ag loading. Concentration escalation of soluble Ag resulted in an increase in IL-2 and IFNγ and a decrease in IL-4. Treatment with PLG-Ag followed a similar trend but with lower levels of IL-2 and IFNγ secreted. Transcriptional Activity CEll ARrays (TRACER) were employed to measure the real-time transcription factor (TF) activity in Ag-presenting DCs. The kinetics and magnitude of TF activity was dependent on the Ag delivery method, concentration, and Ag loading. Ag positively regulated IRF1 activity and, as carriers, NPs and ECDI-treated SP negatively regulated this signaling. The effect of Ag loading and dose on tolerance induction were corroborated in vivo using the delayed-type hypersensitivity (DTH) and experimental autoimmune encephalomyelitis (EAE) mouse models where a threshold of 8 µg/mg Ag loading and 0.5 mg PLG-Ag dose were required for tolerance. Together, the effect of Ag loading and dosing on in vitro and in vivo immune regulation provide useful insights for translating Ag-carrier systems for the clinical treatment of immune disorders.


Assuntos
Encefalomielite Autoimune Experimental , Nanopartículas , Animais , Camundongos , Linfócitos T , Interleucina-2 , Interleucina-4/uso terapêutico , Antígenos , Encefalomielite Autoimune Experimental/tratamento farmacológico
8.
ACS Appl Polym Mater ; 5(11): 8794-8807, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38911349

RESUMO

Polymeric nanoparticles (NPs) comprised of poly(lactic-co-glycolic acid) (PLGA) have found success in modulating antigen (Ag)-specific T cell responses for the treatment multiple immunological diseases. Common methods by which Ags are associated with NPs are through encapsulation and surface conjugation; however, these methods suffer from several limitations, including uncontrolled Ag loading, burst release, and potential immune recognition. To overcome these limitations and study the relationship between NP design parameters and modulation of innate and Ag-specific adaptive immune cell responses, we developed ovalbumin (OVA) protein-PLGA bioconjugate NPs (acNP-OVA). OVA was first modified by conjugation with multiple PLGA polymers to synthesize OVA-PLGA conjugates, followed by precise combination with unmodified PLGA to form acNP-OVA with well-defined Ag loadings, reduced burst release, and reduced antibody recognition. Expression of MHC II, CD80, and CD86 on bone marrow-derived dendritic cells (BMDCs) increased as a function of acNP-OVA Ag loading. NanoString studies using BMDCs showed that PLGA NPs generally induced anti-inflammatory gene expression profiles independent of the Ag delivery method, where S100a9, Sell, and Ppbp were most significantly reduced. Co-culture studies using acNP-OVA-treated BMDCs and OT-II CD4+ T cells revealed that Ag-specific T cell activation, expansion, and differentiation were dependent on Ag loading and formulation parameters. CD25 expression was induced using acNP-OVA with the lowest Ag loading; however, the induction of robust CD4+ T cell proliferative and cytokine responses required acNP-OVA formulations with higher Ag loading, which was supported using a regulatory T cell (Treg) induction assay. The distinct differences in Ag loading required to achieve various T cell responses supported the concept of an Ag loading threshold for Ag-specific immunotherapy. We anticipate this work will help guide NP designs and aid in the future development of NP-based immunotherapies for Ag-specific immunomodulation.

9.
ACS Appl Mater Interfaces ; 14(51): 56440-56453, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36525379

RESUMO

Extrahepatic nucleic acid delivery using polymers typically requires the synthesis and purification of custom monomers, post-synthetic modifications, and incorporation of additional excipients to augment their stability, endosomal escape, and in vivo effectiveness. Here, we report the development of a single-component and excipient-free, polyester-based nucleic acid delivery nanoparticle platform comprising ionizable N-methyldiethanolamine (MDET) and various hydrophobic alkyl diols (Cp) that achieves lung-selective nucleic acid transfection in vivo. PolyMDET and polyMDET-Cp polyplexes displayed high serum and enzymatic stability, while delivering pDNA or mRNA to "hard-to-transfect" innate immune cells. PolyMDET-C4 and polyMDET-C6 mediated high protein expression in lung alveolar macrophages and dendritic cells without inducing tissue damage or systemic inflammatory responses. Improved strategies using readily available starting materials to produce a simple, excipient-free, non-viral nucleic acid delivery platform with lung-selective and innate immune cell tropism has the potential to expedite clinical deployment of polymer-based genetic medicines.


Assuntos
Nanopartículas , Poliésteres , RNA Mensageiro/genética , RNA Mensageiro/química , Transfecção , Plasmídeos/genética , DNA/química , Polímeros/química , Pulmão/metabolismo , Nanopartículas/química , Imunidade Inata
10.
ACS Pharmacol Transl Sci ; 5(11): 1128-1141, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36407956

RESUMO

Histone deacetylase inhibitors (HDACi) induce potent anti-inflammatory responses when used to treat inflammatory diseases. Suberoylanilide hydroxamic acid (SAHA), a pan-HDACi, decreases pro-inflammatory cytokine levels and attenuates cytokine storm in sepsis; however, its toxicity profile toward immune cells has limited its use as a sepsis therapeutic. Here, we developed a modification to SAHA by para-hydroxymethylating the capping group to generate SAHA-OH. We discovered that SAHA-OH provides a favorable improvement to the toxicity profile compared to SAHA. SAHA-OH significantly reduced primary macrophage apoptosis and splenic B cell death as well as mitigated organ damage using a lipopolysaccharide (LPS)-induced endotoxemia mouse model. Furthermore, SAHA-OH retained anti-inflammatory responses similar to SAHA as measured by reductions in LPS-induced proinflammatory cytokine secretions in vitro and in vivo. These effects were attributed to a decreased selectivity of HDAC1, 2, 3, 8 and an increased selectivity for HDAC6 for SAHA-OH as determined by IC50 values. Our results support the potential for SAHA-OH to modulate acute proinflammatory responses while mitigating SAHA-associated drug toxicity for use in the treatment of inflammation-associated diseases and conditions.

11.
Biomater Sci ; 10(10): 2540-2549, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35476072

RESUMO

Nanoparticles (NPs) have demonstrated great promise as immunotherapies for applications ranging from cancer, autoimmunity, and infectious disease. Upon encountering biological fluids, NPs rapidly adsorb biomolecules, forming the "biomolecular corona" (BC), and the altered character of NPs due to their newly acquired biological identity can impact their in vivo fate. Recently, it has been shown that the NP-BC is person-specific, and even minute differences in the biomolecule composition can give rise to altered immune recognition, cellular interactions, pharmacokinetics, and biodistribution. Given the current rise in the development of NP-based therapeutics, it is of utmost importance to better understand how pre-existing conditions, that result in the formation of a personalized BC, can be leveraged to aid in the prediction of the therapeutic outcomes of NPs. In this minireview, we will discuss the formation of the BC, implications of the BC for NP-biological interactions, and its clinical importance in the context of immunomodulation and cancer therapeutics.


Assuntos
Nanopartículas , Neoplasias , Coroa de Proteína , Humanos , Imunomodulação , Cobertura de Condição Pré-Existente , Distribuição Tecidual
12.
Pharm Dev Technol ; 27(4): 389-398, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35468028

RESUMO

The focus of the current study is to investigate cholecalciferol (vitamin D3) solubilization by hydroxypropyl-ß-cyclodextrin (HPBCD) complexation through experimental and computational studies. Phase solubility diagram of vitamin D3 (completely insoluble in water) has an AP profile revealing a deviation from a linear regression with HPBCD concentration increase. Differential scanning calorimetry (DSC) is the best tool to confirm complex formation by disappearance of cholecalciferol exothermic peak in cholecalciferol-HPBCD complex thermogram, due to its amorphous state by entering HPBCD inner hydrophobic cavity, similarly validated by Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). AP solubility diagram profile can be associated with cholecalciferol-HPBCD complex instability in liquid phase requiring spray drying to bring it to a solid dispersion state (always more stable) illustrated by scanning electron microscopy (SEM). Computational studies led to a deeper understanding and clarification, at molecular level, of the interactions within cholecalciferol-HPBCD complex. Thermodynamics and geometry of the complex were investigated by molecular dynamics (MD) simulation.


Assuntos
Simulação de Dinâmica Molecular , beta-Ciclodextrinas , 2-Hidroxipropil-beta-Ciclodextrina/química , Varredura Diferencial de Calorimetria , Colecalciferol , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X , beta-Ciclodextrinas/química
13.
Biomaterials ; 283: 121457, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35286851

RESUMO

The intravenous delivery of disease-relevant antigens (Ag) by polymeric nanoparticles (NP-Ags) has demonstrated Ag-specific immune tolerance in autoimmune and allergic disorders as well as allogeneic transplant rejection. NP-Ags are observed to distribute to the spleen, which has an established role in the induction of immune tolerance. However, studies have shown that the spleen is dispensable for NP-Ag-induced tolerance, suggesting significant contributions from other immunological sites. Here, we investigated the tolerogenic contributions of Kupffer cells (KCs) and liver sinusoidal endothelial cells (LSECs) to NP-Ag-induced tolerance in a mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). Intravenously delivered Ag-conjugated poly(lactide-co-glycolide) NPs (PLG-Ag) distributed largely to the liver, where they associated with both KCs and LSECs. This distribution was accompanied by CD4 T cell accumulation, clonal deletion, and PD-L1 expression by KCs and LSECs. Ex vivo co-cultures of PLG-Ag-treated KCs or LSECs with Ag-specific CD4 T cells resulted in PGE2 and IL-10 or PGE2 secretion, respectively. KC depletion and adoptive transfer experiments demonstrated that KCs were sufficient, but not necessary, to mediate PLG-Ag-induced tolerance in EAE. The durability of PLG-Ag-induced tolerance in the absence of KCs may be attributed to the distribution of PLG-Ags to LSECs, which demonstrated similar levels of PD-L1, PGE2, and T cell stimulatory ability. Collectively, these studies provide mechanistic support for the role of liver KCs and LSECs in Ag-specific tolerance for a biomaterial platform that is currently being evaluated in clinical trials.


Assuntos
Células de Kupffer , Nanopartículas , Animais , Células Endoteliais/metabolismo , Tolerância Imunológica , Células de Kupffer/metabolismo , Fígado , Camundongos
14.
Curr Biol ; 32(7): 1641-1649.e3, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35196506

RESUMO

There is an urgent need to halt and reverse loss of mangroves and seagrass to protect and increase the ecosystem services they provide to coastal communities, such as enhancing coastal resilience and contributing to climate stability.1,2 Ambitious targets for their recovery can inspire public and private investment in conservation,3 but the expected outcomes of different protection and restoration strategies are unclear. We estimated potential recovery of mangroves and seagrass through gains in ecosystem extent to the year 2070 under a range of protection and restoration strategies implemented until the year 2050. Under a protection-only scenario, the current trajectories of net mangrove loss slowed, and a minor net gain in global seagrass extent (∼1%) was estimated. Protection alone is therefore unlikely to drive sufficient recovery. However, if action is taken to both protect and restore, net gains of up to 5% and 35% of mangroves and seagrasses, respectively, could be achieved by 2050. Further, protection and restoration can be complementary, as protection prevents losses that would otherwise occur post-2050, highlighting the importance of implementing protection measures. Our findings provide the scientific evidence required for setting strategic and ambitious targets to inspire significant global investment and effort in mangrove and seagrass conservation.


Assuntos
Ecossistema , Áreas Alagadas , Clima , Conservação dos Recursos Naturais
15.
AAPS J ; 24(1): 6, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34859324

RESUMO

Nanoparticles (NPs) have emerged as a highly useful and clinically translatable drug delivery platform for vast therapeutic payloads. Through the precise tuning of their physicochemical properties, NPs can be engineered to exhibit controlled drug release properties, enhanced circulation times, improved cellular uptake and targeting, and reduced toxicity profiles. Conventional bulk methods for the production of polymeric NPs suffer from the ability to control their size and polydispersity, batch-to-batch variability, significant preparation times, and low recovery. Here, we describe the development and optimization of a high-throughput microfluidic method to produce cargo-less immunomodulatory nanoparticles (iNPs) and their formulation-dependent anti-inflammatory properties for the modulation of lipopolysaccharide (LPS)-induced macrophage responses. Using poly(lactic acid) (PLA) as the core-forming polymer, a rapid and tunable microfluidic hydrodynamic flow-focusing method was developed and optimized to systematically evaluate the role of polymer and surfactant concentration, surfactant chemistry, and flow rate ratio (FRR) on the formation of iNPs. A set of iNPs with 6 different surface chemistries and 2 FRRs was then prepared to evaluate their inherent anti-inflammatory effects using bone marrow-derived macrophages stimulated with the Toll-like receptor 4 agonist, LPS. Finally, a lyophilization study was performed using various cryoprotectants and combinations to identify preferable conditions for iNP storage. Overall, we demonstrate a highly controlled and reproducible method for the formulation of iNPs using microfluidics and their formulation-dependent inherent anti-inflammatory immunomodulatory properties, which represents a potentially promising strategy for the management of inflammation.


Assuntos
Microfluídica , Nanopartículas , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Macrófagos , Microfluídica/métodos , Nanopartículas/química , Tamanho da Partícula
16.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34725160

RESUMO

Seagrass meadows are threatened by multiple pressures, jeopardizing the many benefits they provide to humanity and biodiversity, including climate regulation and food provision through fisheries production. Conservation of seagrass requires identification of the main pressures contributing to loss and the regions most at risk of ongoing loss. Here, we model trajectories of seagrass change at the global scale and show they are related to multiple anthropogenic pressures but that trajectories vary widely with seagrass life-history strategies. Rapidly declining trajectories of seagrass meadow extent (>25% loss from 2000 to 2010) were most strongly associated with high pressures from destructive demersal fishing and poor water quality. Conversely, seagrass meadow extent was more likely to be increasing when these two pressures were low. Meadows dominated by seagrasses with persistent life-history strategies tended to have slowly changing or stable trajectories, while those with opportunistic species were more variable, with a higher probability of either rapidly declining or rapidly increasing. Global predictions of regions most at risk for decline show high-risk areas in Europe, North America, Japan, and southeast Asia, including places where comprehensive long-term monitoring data are lacking. Our results highlight where seagrass loss may be occurring unnoticed and where urgent conservation interventions are required to reverse loss and sustain their essential services.


Assuntos
Efeitos Antropogênicos , Características de História de Vida , Modelos Biológicos , Poaceae , Áreas Alagadas , Geografia , Humanos , Oceanos e Mares
17.
Pharmaceutics ; 13(11)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34834256

RESUMO

Inflammation is a key homeostatic process involved in the body's response to a multitude of disease states including infection, autoimmune disorders, cancer, and other chronic conditions. When the initiating event is poorly controlled, severe inflammation and globally dysregulated immune responses can occur. To address the lack of therapies that efficaciously address the multiple aspects of the dysregulated immune response, we developed cargo-less immunomodulatory nanoparticles (iNPs) comprised of poly(lactic acid) (PLA) with either poly(vinyl alcohol) (PVA) or poly(ethylene-alt-maleic acid) (PEMA) as stabilizing surfactants and investigated the mechanisms by which they exert their inherent anti-inflammatory effects. We identified that iNPs leverage a multimodal mechanism of action by physically interfering with the interactions between pathogen-associated molecular patterns (PAMPs) and bone marrow-derived macrophages (BMMΦs). Additionally, we showed that iNPs mitigate proinflammatory cytokine secretions induced by LPS via a time- and composition-dependent abrogation of NF-κB p65 and p38 MAPK activation. Lastly, inhibition studies were performed to establish the role of a pH-sensing G-protein-coupled receptor, GPR68, on contributing to the activity of iNPs. These data provide evidence for the multimodal mechanism of action of iNPs and establish their potential use as a novel therapeutic for the treatment of severe inflammation.

18.
Cureus ; 13(9): e18046, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34692278

RESUMO

POEMS syndrome (polyneuropathy, organomegaly, endocrinopathy, monoclonal protein, skin changes) is a rare paraneoplastic syndrome due to a plasma cell disorder. Diagnosis requires peripheral neuropathy and a monoclonal plasma cell disorder along with one major and one minor criteria, but cardiac manifestations are uncommon. The pathogenesis of POEMS syndrome is not well understood but it is thought to involve overproduction of proinflammatory cytokines, such as vascular endothelial growth factor (VEGF), interleukin-1 beta (IL-1B), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha). POEMS syndrome commonly presents in the fifth to sixth decade of life, mainly in non-Hispanic Caucasian individuals, and affects more men than women (2:1). We report a unique case of a 28-year-old African American female with a history of POEMS syndrome and a new diagnosis of dilated, non-ischemic cardiomyopathy and New York Heart Association (NYHA) class IV, stage D heart failure with an ejection fraction (EF) of 30% as a result of the natural progression of her untreated POEMS syndrome.

19.
AAPS PharmSciTech ; 22(3): 101, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712968

RESUMO

There is an increasing need to develop improved and non-invasive strategies to treat spinal cord injury (SCI). Nanoparticles (NPs) are an enabling technology to improve drug delivery, modulate inflammatory responses, and restore functional responses following SCI. However, the complex pathophysiology associated with SCI presents several distinct challenges that must be overcome for sufficient NP drug delivery to the spinal cord. The objective of this mini-review is to highlight the physiological challenges and cell types available for modulation and discuss several promising advancements using NPs to improve SCI treatment. We will focus our discussion on recent innovative approaches in NP drug delivery and how the implementation of multifactorial approaches to address the proinflammatory and complex immune dysfunction in SCI offers significant potential to improve outcomes in SCI.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/uso terapêutico , Humanos
20.
Sci Rep ; 11(1): 1188, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441960

RESUMO

Connectivity is fundamentally important for shaping the resilience of complex human and natural networks when systems are disturbed. Ecosystem resilience is, in part, shaped by the spatial arrangement of habitats, the permeability and fluxes between them, the stabilising functions performed by organisms, their dispersal traits, and the interactions between functions and stressor types. Controlled investigations of the relationships between these phenomena under multiple stressors are sparse, possibly due to logistic and ethical difficulties associated with applying and controlling stressors at landscape scales. Here we show that grazing performance, a key ecosystem function, is linked to connectivity by manipulating the spatial configuration of habitats in microcosms impacted by multiple stressors. Greater connectivity enhanced ecosystem function and reduced variability in grazing performance in unperturbed systems. Improved functional performance was observed in better connected systems stressed by harvesting pressure and temperature rise, but this effect was notably reversed by the spread of disease. Connectivity has complex effects on ecological functions and resilience, and the nuances should be recognised more fully in ecosystem conservation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...