Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cogn Neurosci ; 34(6): 1001-1014, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35258573

RESUMO

Ongoing fluctuations in neural excitability and connectivity influence whether or not a stimulus is seen. Do they also influence which stimulus is seen? We recorded magnetoencephalography data while 21 human participants viewed face or house stimuli, either one at a time or under bistable conditions induced through binocular rivalry. Multivariate pattern analysis revealed common neural substrates for rivalrous versus nonrivalrous stimuli with an additional delay of ∼36 msec for the bistable stimulus, and poststimulus signals were source-localized to the fusiform face area. Before stimulus onset followed by a face versus house report, fusiform face area showed stronger connectivity to primary visual cortex and to the rest of the cortex in the alpha frequency range (8-13 Hz), but there were no differences in local oscillatory alpha power. The prestimulus connectivity metrics predicted the accuracy of poststimulus decoding and the delay associated with rivalry disambiguation suggesting that perceptual content is shaped by ongoing neural network states.


Assuntos
Reconhecimento Facial , Viés , Face , Humanos , Magnetoencefalografia , Estimulação Luminosa , Visão Binocular , Percepção Visual
2.
J Alzheimers Dis ; 86(1): 21-42, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35034899

RESUMO

The COVID-19 pandemic has accelerated neurological, mental health disorders, and neurocognitive issues. However, there is a lack of inexpensive and efficient brain evaluation and screening systems. As a result, a considerable fraction of patients with neurocognitive or psychobehavioral predicaments either do not get timely diagnosed or fail to receive personalized treatment plans. This is especially true in the elderly populations, wherein only 16% of seniors say they receive regular cognitive evaluations. Therefore, there is a great need for development of an optimized clinical brain screening workflow methodology like what is already in existence for prostate and breast exams. Such a methodology should be designed to facilitate objective early detection and cost-effective treatment of such disorders. In this paper we have reviewed the existing clinical protocols, recent technological advances and suggested reliable clinical workflows for brain screening. Such protocols range from questionnaires and smartphone apps to multi-modality brain mapping and advanced imaging where applicable. To that end, the Society for Brain Mapping and Therapeutics (SBMT) proposes the Brain, Spine and Mental Health Screening (NEUROSCREEN) as a multi-faceted approach. Beside other assessment tools, NEUROSCREEN employs smartphone guided cognitive assessments and quantitative electroencephalography (qEEG) as well as potential genetic testing for cognitive decline risk as inexpensive and effective screening tools to facilitate objective diagnosis, monitor disease progression, and guide personalized treatment interventions. Operationalizing NEUROSCREEN is expected to result in reduced healthcare costs and improving quality of life at national and later, global scales.


Assuntos
COVID-19 , Pandemias , Idoso , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Atenção à Saúde , Humanos , Masculino , Qualidade de Vida
3.
Sci Rep ; 10(1): 11067, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32632150

RESUMO

Recent longitudinal neuroimaging and neurophysiological studies have shown that tracking relative age-related changes in neural signals, rather than a static snapshot of a neural measure, could offer higher sensitivity for discriminating typically developing (TD) individuals from those with autism spectrum disorder (ASD). It is not clear, however, which aspects of age-related changes (trajectories) would be optimal for identifying atypical brain development in ASD. Using a large cross-sectional data set (Autism Brain Imaging Data Exchange [ABIDE] repository; releases I and II), we aimed to explore age-related changes in cortical thickness (CT) in TD and ASD populations (age range 6-30 years old). Cortical thickness was estimated from T1-weighted MRI images at three scales of spatial coarseness (three parcellations with different numbers of regions of interest). For each parcellation, three polynomial models of age-related changes in CT were tested. Specifically, to characterize alterations in CT trajectories, we compared the linear slope, curvature, and aberrancy of CT trajectories across experimental groups, which was estimated using linear, quadratic, and cubic polynomial models, respectively. Also, we explored associations between age-related changes with ASD symptomatology quantified as the Autism Diagnostic Observation Schedule (ADOS) scores. While no overall group differences in cortical thickness were observed across the entire age range, ASD and TD populations were different in terms of age-related changes, which were located primarily in frontal and tempo-parietal areas. These atypical age-related changes were also associated with ADOS scores in the ASD group and used to predict ASD from TD development. These results indicate that the curvature is the most reliable feature for localizing brain areas developmentally atypical in ASD with a more pronounced effect with symptomatology and is the most sensitive in predicting ASD development.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Encéfalo/patologia , Córtex Cerebral/patologia , Adolescente , Adulto , Fatores Etários , Mapeamento Encefálico , Criança , Estudos Transversais , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
4.
Front Hum Neurosci ; 13: 78, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30914937

RESUMO

Autism Spectrum Disorder (ASD) is an increasingly common developmental disorder that affects 1 in 59 children. Despite this high prevalence of ASD, knowledge regarding the biological basis of its associated cognitive difficulties remains scant. In this study, we aimed to identify altered neurophysiological responses underlying inhibitory control and emotion processing difficulties in ASD, together with their associations with age and various domains of cognitive and social function. This was accomplished by assessing electroencephalographic recordings during an emotional go/nogo task alongside parent rating scales of behavior. Event related potential (ERP) N200 component amplitudes were reduced in children with ASD compared to typically developing (TD) children. No group differences were found, however, for task performance, P300 amplitude or latency, or N170 amplitude or latency, suggesting that individuals with ASD may only present conflict monitoring abnormalities, as reflected by the reduced N200 component, compared to TD individuals. Consistent with previous findings, increased age correlated with improved task performance scores and reduced N200 amplitude in the TD group, indicating that as these children develop, their neural systems become more efficient. These associations were not identified in the ASD group. Results also showed significant associations between increased N200 amplitudes and improved executive control abilities and decreased autism traits in TD children only. The newly discovered findings of decreased brain activation in children with ASD, alongside differences in correlations with age compared to TD children, provide a potential neurophysiological indicator of atypical development of inhibitory control mechanisms in these individuals.

5.
Neuroimage ; 190: 182-190, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29355768

RESUMO

Neuroimaging studies of Autism Spectrum Disorder (ASD) have yielded inconsistent results indicating either increases or decreases in functional connectivity, or both. Recent findings suggest that these seemingly divergent results might be underpinned by greater inter-individual variability in brain network connectivity in ASD. We tested the hypothesis that the spatial patterns of intrinsic connectivity networks (ICNs) are more idiosyncratic in ASD, and demonstrated that this increased variability is associated with symptomatology. We estimated whole brain functional connectivity based on resting state functional magnetic resonance imaging (fMRI) data obtained from the Autism Brain Imaging Data Exchange I & II (ABIDE I & II) repository: 422 (69 females) participants with ASD and 424 (59 females) typically developing (TD) participants between 6 and 30 years of age. We clustered individuals' patterns of resting state functional connectivity into seven networks, each representing an ICN, and assessed the heterogeneity of each vertex on the cortical surface across individuals in terms of its incorporation into a particular ICN. We found that the incorporation of individual anatomical locations (vertices) to a common network was less consistent across individuals in ASD, indicating a more idiosyncratic organization of ICNs in the ASD brain. This spatial shifting effect was particularly pronounced in the Sensory-Motor Network (SMN) and the Default Mode Network (DMN). We also found that this idiosyncrasy in large-scale brain network organization was correlated with ASD symptomatology (ADOS). These results support the view that idiosyncratic functional connectivity is a hallmark of the ASD brain. We provide the first evidence that the anatomical organization of ICNs is idiosyncratic in ASD, as well as providing evidence that such abnormalities in brain network organization may contribute to the symptoms of ASD.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Córtex Cerebral/fisiopatologia , Conectoma/métodos , Rede Nervosa/fisiopatologia , Adolescente , Adulto , Transtorno do Espectro Autista/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
6.
Biomed Eng Lett ; 7(3): 215-219, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30603168

RESUMO

A non-magnetic MEG compatible device has been developed that provides continuous force and velocity information. Combined with MEG, this device may find utility in characterizing brain regions associated with force and velocity relative to individual digits or movement pattern. 15 healthy right-handed participants were given visual cues to perform random finger movements on the prototype finger sensor for 21 s and then rest for 21 s (7 times). Respective finger flexion data were obtained, during 151-channel MEG brain scanning, by feeding the signal from finger sensor into four input Analog to Digital Converter (ADC) channels in the MEG hardware. The source activity was reconstructed in beta band using a Linearly Constrained Minimum Variance (LCMV) beamformer in the beta band. The ADC channels were used as regressors for a continuous time General Linear Model (GLM) and a Region of Interest (ROI) was identified to examine activity. MEG analysis showed bilateral activation in the primary motor cortex region. Because individual digits could be isolated in the ADC data, somatotopy of the fingers were observed consistent with the homunculus except pinky finger. The total span was calculated to be 5.5662 mm. The study confirms that the finger sensor is magnetically compatible with MEG measurements and may potentially provide a means to study complex sensorimotor functions. Improved isolation of individual digit information along with the use of machine learning algorithms can help retrieve more accurate results.

7.
Front Hum Neurosci ; 10: 513, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27790106

RESUMO

The human visual system can quickly and efficiently extract categorical information from a complex natural scene. The rapid detection of animals in a scene is one compelling example of this phenomenon, and it suggests the automatic processing of at least some types of categories with little or no attentional requirements (Li et al., 2002, 2005). The aim of this study is to investigate whether the remarkable capability to categorize complex natural scenes exist in the absence of awareness, based on recent reports that "invisible" stimuli, which do not reach conscious awareness, can still be processed by the human visual system (Pasley et al., 2004; Williams et al., 2004; Fang and He, 2005; Jiang et al., 2006, 2007; Kaunitz et al., 2011a). In two experiments, we recorded event-related potentials (ERPs) in response to animal and non-animal/vehicle stimuli in both aware and unaware conditions in a continuous flash suppression (CFS) paradigm. Our results indicate that even in the "unseen" condition, the brain responds differently to animal and non-animal/vehicle images, consistent with rapid activation of animal-selective feature detectors prior to, or outside of, suppression by the CFS mask.

8.
PLoS One ; 10(11): e0141787, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26544606

RESUMO

Whether selecting a candy in a shop or picking a digital camera online, there are usually many options from which consumers may choose. With such abundance, consumers must use a variety of cognitive, emotional, and heuristic means to filter out and inhibit some of their responses. Here we use brand logos within a Go/No-Go task to probe inhibitory control during the presentation of familiar and unfamiliar logos. The results showed no differences in response times or in commission errors (CE) between familiar and unfamiliar logos. However, participants demonstrated a generally more cautious attitude of responding to the familiar brands: they were significantly slower and less accurate at responding to these brands in the Go trials. These findings suggest that inhibitory control can be exercised quite effectively for familiar brands, but that when such inhibition fails, the potent appetitive nature of brands is revealed.


Assuntos
Comportamento do Consumidor , Inibição Psicológica , Atitude , Cognição , Feminino , Humanos , Masculino , Estimulação Física , Adulto Jovem
9.
J Clin Exp Neuropsychol ; 34(3): 243-55, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22185565

RESUMO

Over the past decade, the decision-making task of Bechara, Damasio, Damasio, and Anderson (1994) , otherwise known as the Iowa Gambling Task (or IGT), has been employed in several hundred published studies. This task has helped to elucidate the nature of normal and abnormal decision making. However, the IGT has also proven time consuming to administer and difficult to employ in some clinical settings. The present study presents a novel measure that drastically reduces the time required for task administration: the Bangor Learning Intuitive and Nonverbal Kaleidoscope Task--BLINK--which employs immediate, nonverbal, visual feedback that allows participants to incorporate win/loss information within several hundred milliseconds. The present study demonstrates that BLINK is approximately 25 times faster than the IGT and also has a lower false-positive rate. In addition, we use expectancy-valence models to fit performance on our task, and we demonstrate that BLINK appears to depend on psychological mechanisms similar to those involved in IGT performance. We discuss several important theoretical and applied implications of the BLINK task.


Assuntos
Tomada de Decisões , Jogo de Azar/psicologia , Adolescente , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Fatores de Tempo , Adulto Jovem
10.
Exp Brain Res ; 178(4): 509-17, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17091293

RESUMO

Humans use the same representations to code self-produced and observed actions. Neurophysiological evidence for this view comes from the discovery of the so-called mirror neurons in premotor cortex of the macaque monkey. These neurons respond when the monkey performs a particular action but also when it observes the same behavior in another individual. In humans, such direct links between perception and action seem to mediate action priming, where a response is facilitated when a similar action is observed. An issue that has not been fully resolved concerns the role of selective attention in these processes. Action priming appears to be an automatic process in the sense that the observed action can be irrelevant to the observer's task and nevertheless prime similar responses. However, it is not known whether attention has to be oriented to the action for these processes to be engaged. It is demonstrated here that spatial attention indeed has to be oriented to the action related body site for action priming to take place. Furthermore, if attention is oriented to the appropriate body site, there need be no visual cues to action for action priming to emerge.


Assuntos
Acomodação Ocular/fisiologia , Atenção/fisiologia , Comportamento Imitativo/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Espacial/fisiologia , Adolescente , Adulto , Análise de Variância , Feminino , Corpo Humano , Humanos , Masculino , Estimulação Luminosa , Tempo de Reação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...