Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 588(7836): E1, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33188369

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Nature ; 555(7698): 647-651, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29562229

RESUMO

Periodic food shortages are a major challenge faced by organisms in natural habitats. Cave-dwelling animals must withstand long periods of nutrient deprivation, as-in the absence of photosynthesis-caves depend on external energy sources such as seasonal floods. Here we show that cave-adapted populations of the Mexican tetra, Astyanax mexicanus, have dysregulated blood glucose homeostasis and are insulin-resistant compared to river-adapted populations. We found that multiple cave populations carry a mutation in the insulin receptor that leads to decreased insulin binding in vitro and contributes to hyperglycaemia. Hybrid fish from surface-cave crosses carrying this mutation weigh more than non-carriers, and zebrafish genetically engineered to carry the mutation have increased body weight and insulin resistance. Higher body weight may be advantageous in caves as a strategy to cope with an infrequent food supply. In humans, the identical mutation in the insulin receptor leads to a severe form of insulin resistance and reduced lifespan. However, cavefish have a similar lifespan to surface fish and do not accumulate the advanced glycation end-products in the blood that are typically associated with the progression of diabetes-associated pathologies. Our findings suggest that diminished insulin signalling is beneficial in a nutrient-limited environment and that cavefish may have acquired compensatory mechanisms that enable them to circumvent the typical negative effects associated with failure to regulate blood glucose levels.


Assuntos
Aclimatação/fisiologia , Ecossistema , Comportamento Alimentar , Peixes/fisiologia , Resistência à Insulina , Inanição , Envelhecimento/sangue , Envelhecimento/fisiologia , Animais , Glicemia/metabolismo , Peso Corporal/genética , Cavernas , Feminino , Peixes/sangue , Produtos Finais de Glicação Avançada/sangue , Homeostase , Insulina/metabolismo , Masculino , Mutação , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
3.
J Vis Exp ; (142)2018 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-30638199

RESUMO

River and cave-adapted populations of Astyanax mexicanus show differences in morphology, physiology, and behavior. Research focused on comparing adult forms has revealed the genetic basis of some of these differences. Less is known about how the populations differ at post-larval stages (at the onset of feeding). Such studies may provide insight into how cavefish survive through adulthood in their natural environment. Methods for comparing post-larval development in the laboratory require standardized aquaculture and feeding regimes. Here we describe how to raise fish on a diet of nutrient-rich rotifers in non-recirculating water for up to two-weeks post fertilization. We demonstrate how to collect post-larval fish from this nursery system and perform whole-mount immunostaining. Immunostaining is an attractive alternative to transgene expression analysis for investigating development and gene function in A. mexicanus. The nursery method can also be used as a standard protocol for establishing density-matched populations for growth into adults.


Assuntos
Characidae/metabolismo , Imuno-Histoquímica/métodos , Animais , Characidae/crescimento & desenvolvimento , Larva , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...