Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(25): 9350-9354, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34156845

RESUMO

N,O-Acetals derived from α,ß-unsaturated ß-aryl substituted aldehydes and (1-aminocyclohexyl)methanol were found to undergo a catalytic enantioselective [2 + 2] photocycloaddition to a variety of olefins (19 examples, 54-96% yield, 84-98% ee). The reaction was performed by visible light irradiation (λ = 459 nm). A chiral phosphoric acid (10 mol %) with an (R)-1,1'-bi-2-naphthol (binol) backbone served as the catalyst. The acid displays two thioxanthone groups attached to position 3 and 3' of the binol core via a meta-substituted phenyl linker. NMR studies confirmed the formation of an iminium ion which is attached to the acid counterion in a hydrogen-bond assisted ion pair. The catalytic activity of the acid rests on the presence of the thioxanthone moieties which enable a facile triplet energy transfer and an efficient enantioface differentiation.

2.
Chemistry ; 26(23): 5190-5194, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32065432

RESUMO

A chiral phosphoric acid with a 2,2'-binaphthol core was prepared that displays two thioxanthone moieties at the 3,3'-position as light-harvesting antennas. Despite its relatively low triplet energy, the phosphoric acid was found to be an efficient catalyst for the enantioselective intermolecular [2+2] photocycloaddition of ß-carboxyl-substituted cyclic enones (e.r. up to 93:7). Binding of the carboxylic acid to the sensitizer is suggested by NMR studies and by DFT calculations to occur by means of two hydrogen bonds. The binding event not only enables an enantioface differentiation but also modulates the triplet energy of the substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...