Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Hematol ; 96(10): 1264-1274, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34264525

RESUMO

Hematology analyzers capable of performing complete blood count (CBC) have lagged in their prevalence at the point-of-care. Sight OLO (Sight Diagnostics, Israel) is a novel hematological platform which provides a 19-parameter, five-part differential CBC, and is designed to address the limitations in current point-of-care hematology analyzers using recent advances in artificial intelligence (AI) and computer vision. Accuracy, repeatability, and flagging capabilities of OLO were compared with the Sysmex XN-Series System (Sysmex, Japan). Matrix studies compared performance using venous, capillary and direct-from-fingerprick blood samples. Regression analysis shows strong concordance between OLO and the Sysmex XN, demonstrating that OLO performs with high accuracy for all CBC parameters. High repeatability and reproducibility were demonstrated for most of the testing parameters. The analytical performance of the OLO hematology analyzer was validated in a multicenter clinical laboratory setting, demonstrating its accuracy and comparability to clinical laboratory-based hematology analyzers. Furthermore, the study demonstrated the validity of CBC analysis of samples collected directly from fingerpricks.


Assuntos
Inteligência Artificial , Contagem de Células Sanguíneas/instrumentação , Sistemas Automatizados de Assistência Junto ao Leito , Contagem de Células Sanguíneas/métodos , Desenho de Equipamento , Humanos , Reprodutibilidade dos Testes
2.
Proc Natl Acad Sci U S A ; 110(24): 9633-8, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23708121

RESUMO

Controlling the coupling between localized spins and itinerant electrons can lead to exotic magnetic states. A novel system featuring local magnetic moments and extended 2D electrons is the interface between LaAlO3 and SrTiO3. The magnetism of the interface, however, was observed to be insensitive to the presence of these electrons and is believed to arise solely from extrinsic sources like oxygen vacancies and strain. Here we show the existence of unconventional electronic phases in the LaAlO3/SrTiO3 system pointing to an underlying tunable coupling between itinerant electrons and localized moments. Using anisotropic magnetoresistance and anomalous Hall effect measurements in a unique in-plane configuration, we identify two distinct phases in the space of carrier density and magnetic field. At high densities and fields, the electronic system is strongly polarized and shows a response, which is highly anisotropic along the crystalline directions. Surprisingly, below a density-dependent critical field, the polarization and anisotropy vanish whereas the resistivity sharply rises. The unprecedented vanishing of the easy axes below a critical field is in sharp contrast with other coupled magnetic systems and indicates strong coupling with the moments that depends on the symmetry of the itinerant electrons. The observed interplay between the two phases indicates the nature of magnetism at the LaAlO3/SrTiO3 interface as both having an intrinsic origin and being tunable.


Assuntos
Alumínio , Elétrons , Lantânio , Óxidos/química , Estrôncio/química , Titânio/química , Algoritmos , Anisotropia , Campos Magnéticos , Magnetismo , Modelos Químicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...