Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 65(20): 3196-217, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18597044

RESUMO

Small conductance calcium-activated potassium (SK or K(Ca)2) channels link intracellular calcium transients to membrane potential changes. SK channel subtypes present different pharmacology and distribution in the nervous system. The selective blocker apamin, SK enhancers and mice lacking specific SK channel subunits have revealed multifaceted functions of these channels in neurons, glia and cerebral blood vessels. SK channels regulate neuronal firing by contributing to the afterhyperpolarization following action potentials and mediating I(AHP), and partake in a calcium-mediated feedback loop with NMDA receptors, controlling the threshold for induction of hippocampal long-term potentiation. The function of distinct SK channel subtypes in different neurons often results from their specific coupling to different calcium sources. The prominent role of SK channels in the modulation of excitability and synaptic function of limbic, dopaminergic and cerebellar neurons hints at their possible involvement in neuronal dysfunction, either as part of the causal mechanism or as potential therapeutic targets.


Assuntos
Encéfalo/citologia , Encéfalo/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Transtornos Mentais/genética , Transtornos Mentais/metabolismo , Transtornos Mentais/patologia , Dados de Sequência Molecular , Neurônios/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/química
2.
Neuroscience ; 110(3): 541-54, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11906792

RESUMO

The contribution of subclasses of K(+) channels to the response of mammalian neurons to anoxia is not yet clear. We investigated the role of ATP-sensitive (K(ATP)) and Ca(2+)-activated K(+) currents (small conductance, SK, big conductance, BK) in mediating the effects of chemical anoxia by cyanide, as determined by electrophysiological analysis and fluorometric Ca(2+) measurements in dorsal vagal neurons of rat brainstem slices. The cyanide-evoked persistent outward current was abolished by the K(ATP) channel blocker tolbutamide, but not changed by the SK and BK channel blockers apamin or tetraethylammonium. The K(+) channel blockers also revealed that ongoing activation of K(ATP) and SK channels counteracts a tonic, spike-related rise in intracellular Ca(2+) ([Ca(2+)](i)) under normoxic conditions, but did not modify the rise of [Ca(2+)](i) associated with the cyanide-induced outward current. Cyanide depressed the SK channel-mediated afterhyperpolarizing current without changing the depolarization-induced [Ca(2+)](i) transient, but did not affect spike duration that is determined by BK channels. The afterhyperpolarizing current and the concomitant [Ca(2+)](i) rise were abolished by Ca(2+)-free superfusate that changed neither the cyanide-induced outward current nor the associated [Ca(2+)](i) increase. Intracellular BAPTA for Ca(2+) chelation blocked the afterhyperpolarizing current and the accompanying [Ca(2+)](i) increase, but had no effect on the cyanide-induced outward current although the associated [Ca(2+)](i) increase was noticeably attenuated. Reproducing the cyanide-evoked [Ca(2+)](i) transient with the Ca(2+) pump blocker cyclopiazonic acid did not evoke an outward current. Our results show that anoxia mediates a persistent hyperpolarization due to activation of K(ATP) channels, blocks SK channels and has no effect on BK channels, and that the anoxic rise of [Ca(2+)](i) does not interfere with the activity of these K(+) channels.


Assuntos
Hipóxia Encefálica/metabolismo , Bulbo/metabolismo , Neurônios/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Canais de Potássio/metabolismo , Nervo Vago/metabolismo , Transportadores de Cassetes de Ligação de ATP , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Apamina/farmacologia , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Quelantes/farmacologia , Cianetos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Feminino , Hipoglicemiantes/farmacologia , Hipóxia Encefálica/fisiopatologia , Canais KATP , Canais de Potássio Ativados por Cálcio de Condutância Alta , Masculino , Bulbo/citologia , Bulbo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/efeitos dos fármacos , Canais de Potássio Cálcio-Ativados/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização , Ratos , Ratos Wistar , Canais de Potássio Ativados por Cálcio de Condutância Baixa , Tetraetilamônio/farmacologia , Tolbutamida/farmacologia , Nervo Vago/citologia , Nervo Vago/efeitos dos fármacos
3.
J Neurophysiol ; 85(5): 1986-97, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11353015

RESUMO

Stratum (st.) radiatum interneurons represent a heterogeneous class of hippocampal cells with as yet poorly characterized physiological properties. Intracellular staining with biocytin, in situ hybridization, and patch-clamp recording have been combined to investigate the morphological and electrophysiological properties of these cells in the CA3 hippocampal region in young rats [postnatal days 10 to 21 (P10-21)]. Labeled cells presented a heterogeneous morphology with various soma shapes, often found multipolar, and dendritic arborizations confined to st. radiatum. The passive membrane properties of these st. radiatum interneurons showed instead no significant differences between P10 and P21. Low resting potential, high-input resistance, and short time constants characterized CA3 st. radiatum interneurons, which were silent at rest. Action potentials, elicited by brief current pulses, were lower and shorter than in pyramidal cells and followed by a Ca(2+)-dependent medium-duration afterhyperpolarizing potential (mAHP). Prolonged depolarizing current injection generated trains of action potentials that fired at constant frequency after a slight accommodation. The maximum steady-state firing rate was 31 +/- 4 (SD) Hz. Hyperpolarizing current pulses revealed a prominent inward rectification characterized by a "sag," followed by a depolarizing rebound that triggered action potentials. Sag and anodal brake excitation were blocked by Cs(+), suggesting that they were mediated by a hyperpolarization-activated cation conductance (I(h)). In the presence of tetrodotoxin and tetraethylammonium, biphasic tail currents were elicited in voltage clamp after a depolarizing step inducing Ca(2+) influx. Tail currents presented a fast Ca(2+)-activated and apamin-sensitive component (I(AHP)) and were further reduced by carbachol. The presence of I(AHP) was consistent with the high expression level of the apamin-sensitive SK2 subunit transcript in CA3 st. radiatum interneurons as detected by in situ hybridization. Different pharmacological agents were shown to affect the afterhyperpolarizing potential as well as the firing properties of st. radiatum interneurons. Exposure to Ca(2+)-free solutions mainly affected the late phase of repolarization and strongly reduced the mAHP. The mAHP was also attenuated by carbachol and by apamin, suggesting it to be partly mediated by I(AHP). Reduction of the mAHP increased the interneuron firing frequency. In conclusion, st. radiatum interneurons of CA3 hippocampal region represent a class of nonpyramidal cells with action potentials followed by an AHP of relatively short duration, partially generated by apamin and carbachol-sensitive conductances involved in the regulation of the cell firing rate.


Assuntos
Hipocampo/citologia , Interneurônios/fisiologia , Canais de Potássio Cálcio-Ativados , Potenciais de Ação , Animais , Apamina/farmacologia , Cálcio/farmacologia , Cálcio/fisiologia , Carbacol/farmacologia , Colinérgicos/farmacologia , Estimulação Elétrica , Expressão Gênica , Hipocampo/fisiologia , Técnicas Imunoenzimáticas , Hibridização In Situ , Interneurônios/efeitos dos fármacos , Ativação do Canal Iônico , Transporte de Íons/efeitos dos fármacos , Lisina/análogos & derivados , Lisina/análise , Potenciais da Membrana , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Técnicas de Patch-Clamp , Potássio/fisiologia , Canais de Potássio/genética , Canais de Potássio/metabolismo , Células Piramidais/fisiologia , Ratos , Ratos Wistar , Canais de Potássio Ativados por Cálcio de Condutância Baixa , Tetraetilamônio/farmacologia , Tetrodotoxina/farmacologia
4.
J Biol Chem ; 276(13): 9762-9, 2001 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-11134030

RESUMO

In most central neurons, action potentials are followed by an afterhyperpolarization (AHP) that controls firing pattern and excitability. The medium and slow components of the AHP have been ascribed to the activation of small conductance Ca(2+)-activated potassium (SK) channels. Cloned SK channels are heteromeric complexes of SK alpha-subunits and calmodulin. The channels are activated by Ca(2+) binding to calmodulin that induces conformational changes resulting in channel opening, and channel deactivation is the reverse process brought about by dissociation of Ca(2+) from calmodulin. Here we show that SK channel gating is effectively modulated by 1-ethyl-2-benzimidazolinone (EBIO). Application of EBIO to cloned SK channels shifts the Ca(2+) concentration-response relation into the lower nanomolar range and slows channel deactivation by almost 10-fold. In hippocampal CA1 neurons, EBIO increased both the medium and slow AHP, strongly reducing electrical activity. Moreover, EBIO suppressed the hyperexcitability induced by low Mg(2+) in cultured cortical neurons. These results underscore the importance of SK channels for shaping the electrical response patterns of central neurons and suggest that modulating SK channel gating is a potent mechanism for controlling excitability in the central nervous system.


Assuntos
Cálcio/metabolismo , Sistema Nervoso Central/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Canais de Potássio Cálcio-Ativados , Canais de Potássio/fisiologia , Animais , Apamina/farmacologia , Benzimidazóis/farmacologia , Agonistas dos Canais de Cálcio/farmacologia , Calmodulina/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Eletrofisiologia , Hipocampo/citologia , Hipocampo/metabolismo , Magnésio/farmacologia , Oócitos/metabolismo , Canais de Potássio/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Canais de Potássio Ativados por Cálcio de Condutância Baixa , Fatores de Tempo , Xenopus
5.
J Physiol ; 527 Pt 2: 283-90, 2000 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-10970429

RESUMO

Using in situ hybridisation histochemistry in combination with patch-clamp recordings and specific pharmacological tools, the molecular nature of the channels underlying Ca2+-dependent K+ currents was determined in dorsal vagal neurones (DVNs) of rat brainstem slices. In situ hybridisation analysis at cellular resolution revealed the presence of 'big'-conductance Ca2+- and voltage-activated K+ (BK) channel alpha-subunit mRNA, and of only one 'small'-conductance Ca2+-activated K+ (SK) channel subunit transcript, SK3, at very high levels in DVNs. By contrast, SK1 and SK2 mRNAs were below the threshold limit of detection. The SK channel-mediated after-hyperpolarising current (IAHP) was blocked by apamin with a half-maximal inhibitory concentration of approximately 2.2 nM. This is consistent with homomultimeric SK3 channels mediating IAHP in DVNs. IAHP was also blocked by scyllatoxin (20-30 nM) and curare (100-200 microM). Application of apamin (100 nM) or scyllatoxin (20 nM) invariably caused a substantial increase to 146.1 +/- 10.4 and 181.8 +/- 12.9 % of control, respectively, in the spontaneous firing rate of DVNs. Action potential duration was not affected by these SK channel blockers. The selective BK channel blocker iberiotoxin (50 nM) increased action potential duration by 22.5 +/- 7.3 %, as did low concentrations of tetraethylammonium (0.5 mM; 99.3 +/- 16.4 %) and the Ca2+ channel blocker Cd2+ (100 microM; 49.5 +/- 20.9 %). BK channel blockade did not significantly affect the firing rate of DVNs. These results allow us to establish a tight correlation between the properties of cloned and native BK and SK channels, and to achieve an understanding, at the molecular level, of their role in regulating the spontaneous firing frequency and in shaping single action potentials of central neurones.


Assuntos
Neurônios/fisiologia , Canais de Potássio Cálcio-Ativados , Canais de Potássio/fisiologia , Nervo Vago/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Apamina/farmacologia , Tronco Encefálico/citologia , Tronco Encefálico/metabolismo , Eletrofisiologia , Hibridização In Situ , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta , Canais de Potássio Ativados por Cálcio de Condutância Alta , Técnicas de Patch-Clamp , Canais de Potássio/biossíntese , Canais de Potássio/genética , RNA Mensageiro/biossíntese , Ratos , Ratos Wistar , Venenos de Escorpião/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa , Nervo Vago/citologia
6.
Mol Cell Neurosci ; 15(5): 476-93, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-10833304

RESUMO

Ca(2+)-activated, voltage-independent K(+) channels are present in most neurons and mediate the afterhyperpolarizations (AHPs) following action potentials. They present distinct physiological and pharmacological properties and play an important role in controlling neuronal firing frequency and spike frequency adaptation. We used in situ hybridization to characterize the distribution patterns of the three cloned SK channel subunits (SK1-3), the prime candidates likely to underlie Ca(2+)-dependent AHPs in the central nervous system. We found high levels of expression in regions presenting prominent AHP currents, such as, for example, neocortex and CA1-3 layers of the hippocampus (SK1 and SK2), reticularis thalami (SK1 and SK2), supraoptic nucleus (SK3), and inferior olivary nucleus (SK2 and SK3). Our results reveal the functional role of SK channels with defined subunit compositions in some neurons and open the way to the identification of the molecular determinants of AHP currents in many brain regions.


Assuntos
Encéfalo/metabolismo , Cálcio/fisiologia , Canais de Potássio/metabolismo , Animais , Apamina/metabolismo , Apamina/farmacologia , Sítios de Ligação , Resistência a Medicamentos , Condutividade Elétrica , Masculino , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/fisiologia , Isoformas de Proteínas/metabolismo , Ratos , Ratos Wistar , Distribuição Tecidual
7.
Neuropharmacology ; 39(7): 1274-83, 2000 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-10760369

RESUMO

The slow calcium-activated potassium current sI(AHP) underlies spike-frequency adaptation and has a substantial impact on the excitability of hippocampal CA1 pyramidal neurons. Among other neuromodulatory substances, sI(AHP) is modulated by acetylcholine acting via muscarinic receptors. The second-messenger systems mediating the suppression of sI(AHP) by muscarinic agonists are largely unknown. Both protein kinase C and A do not seem to be involved, whereas calcium calmodulin kinase II has been shown to take part in the muscarinic action on sI(AHP). We re-examined the mechanism of action of muscarinic agonists on sI(AHP) combining whole-cell recordings with the use of specific inhibitors or activators of putative constituents of the muscarinic pathway. Our results suggest that activation of muscarinic receptors reduces sI(AHP) in a G-protein-mediated and phospholipase C-independent manner. Furthermore, we obtained evidence for the involvement of the cGMP-cGK pathway and of a protein phosphatase in the cholinergic suppression of sI(AHP), whereas release of Ca(2+) from IP(3)-sensitive stores seems to be relevant neither for maintenance nor for modulation of sI(AHP).


Assuntos
Hipocampo/metabolismo , Potenciais da Membrana/fisiologia , Sistema Nervoso Parassimpático/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Células Piramidais/metabolismo , Animais , Cálcio/metabolismo , Carbacol/farmacologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico , Inibidores Enzimáticos/farmacologia , Guanilato Ciclase/antagonistas & inibidores , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Técnicas In Vitro , Inositol 1,4,5-Trifosfato/farmacologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Agonistas Muscarínicos/farmacologia , Sistema Nervoso Parassimpático/efeitos dos fármacos , Sistema Nervoso Parassimpático/enzimologia , Parassimpatomiméticos/farmacologia , Técnicas de Patch-Clamp , Inibidores de Proteínas Quinases , Células Piramidais/efeitos dos fármacos , Células Piramidais/enzimologia , Ratos , Ratos Wistar , Fosfolipases Tipo C/metabolismo
8.
Proc Natl Acad Sci U S A ; 96(8): 4662-7, 1999 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-10200319

RESUMO

In hippocampal and other cortical neurons, action potentials are followed by afterhyperpolarizations (AHPs) generated by the activation of small-conductance Ca2+-activated K+ channels (SK channels). By shaping the neuronal firing pattern, these AHPs contribute to the regulation of excitability and to the encoding function of neurons. Here we report that CA1 pyramidal neurons express an AHP current that is suppressed by apamin and is involved in the control of repetitive firing. This current presents distinct kinetic and pharmacological features, and it is modulated differently than the apamin-insensitive slow AHP current. Furthermore, our in situ hybridizations show that the apamin-sensitive SK subunits are expressed in CA1 pyramidal neurons, providing a potential molecular correlate to the apamin-sensitive AHP current. Altogether, these results clarify the discrepancy between the reported high density of apamin-binding sites in the CA1 region and the apparent lack of an apamin-sensitive current in CA1 pyramidal neurons, and they may explain the effects of this toxin on hippocampal synaptic plasticity and learning.


Assuntos
Apamina/farmacologia , Hipocampo/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio/fisiologia , Células Piramidais/fisiologia , Animais , Sequência de Bases , Bicuculina/farmacologia , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Hibridização In Situ , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Dados de Sequência Molecular , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos Antissenso/química , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/genética , Células Piramidais/efeitos dos fármacos , Ratos , Tionucleotídeos/farmacologia
9.
J Neurophysiol ; 79(6): 3252-6, 1998 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9636123

RESUMO

The slow Ca2+-activated K+ current, sIAHP, underlying spike frequency adaptation, was recorded with the whole cell patch-clamp technique in CA1 pyramidal neurons in rat hippocampal slices. Inhibitors of serine/threonine protein phosphatases (microcystin, calyculin A, cantharidic acid) caused a gradual decrease of sIAHP amplitude, suggesting the presence of a basal phosphorylation-dephosphorylation turnover regulating sIAHP. Because selective calcineurin (PP-2B) inhibitors did not affect the amplitude of sIAHP, protein phosphatase 1 (PP-1) or 2A (PP-2A) are most likely involved in the basal regulation of this current. The ATP analogue, ATP-gamma-S, caused a gradual decrease in the sIAHP amplitude, supporting a role of protein phosphorylation in the basal modulation of sIAHP. When the protein kinase A (PKA) inhibitor adenosine-3', 5'-monophosphorothioate, Rp-isomer (Rp-cAMPS) was coapplied with the phosphatase inhibitor microcystin, it prevented the decrease in the sIAHP amplitude that was observed when microcystin alone was applied. Furthermore, inhibition of PKA by Rp-cAMPS led to an increase in the sIAHP amplitude. Finally, an adenylyl cyclase inhibitor (SQ22, 536) and adenosine 3',5'-cyclic monophosphate-specific type IV phosphodiesterase inhibitors (Ro 20-1724 and rolipram) led to an increase or a decrease in the sIAHP amplitude, respectively. These findings suggest that a balance between basally active PKA and a phosphatase (PP-1 or PP-2A) is responsible for the tonic modulation of sIAHP, resulting in a continuous modulation of excitability and firing properties of hippocampal pyramidal neurons.


Assuntos
Cálcio/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Canais de Potássio/fisiologia , Proteínas Quinases/metabolismo , Células Piramidais/metabolismo , Adenilil Ciclases/metabolismo , Animais , Estimulação Elétrica , Eletrofisiologia , Inibidores Enzimáticos/farmacologia , Hipocampo/citologia , Hipocampo/enzimologia , Técnicas In Vitro , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosforilação , Inibidores de Proteínas Quinases , Proteína Fosfatase 1 , Células Piramidais/enzimologia , Ratos , Ratos Wistar
10.
Eur J Neurosci ; 8(10): 2098-110, 1996 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-8921301

RESUMO

Noradrenaline inhibits the Ca(2+)-activated K+ current IAHP, which underlies the slow afterhyperpolarization and spike frequency adaptation in hippocampal and neocortical neurons. The resulting increase in excitability probably contributes to the state control of the forebrain during arousal and attention. The modulation of IAHP by noradrenaline has previously been shown to be mediated by beta 1 receptors, cyclic AMP and protein kinase A, but not by alpha receptors. We have now tested the possibility that alpha receptors also contribute to IAHP modulation through interaction with beta receptors, by the use of whole-cell recordings in CA1 pyramidal cells of rat hippocampal slices. The alpha-receptor agonist 6-fluoro-noradrenaline strongly potentiated the effect of isoproterenol on IAHP. The synergistic effect of 6-fluoro-noradrenaline and isoproterenol was blocked by the beta-receptor antagonist timolol, but the receptor type mediating the effect of 6-fluoro-noradrenaline could not be unequivocally identified by using alpha-receptor antagonists. The effect of high concentrations of noradrenaline on IAHP was only partly blocked by the beta-receptor antagonist timolol, and was further reduced by blocking alpha receptors, again suggesting a contribution from alpha receptors. In contrast, the effect of low concentrations of noradrenaline seemed to be potentiated by the alpha-receptor antagonist phentolamine in 57% of the cells, suggesting concentration-dependent antagonistic interaction between alpha and beta receptors. Further tests indicated that the cross-talk between 6-fluoro-noradrenaline and isoproterenol occurs upstream from cyclic AMP production, and that protein kinase A serves as a final common path for the modulation of IAHP by noradrenaline, and by the combination of 6-fluoro-noradrenaline and isoproterenol.


Assuntos
Agonistas alfa-Adrenérgicos/farmacologia , Agonistas Adrenérgicos beta/farmacologia , Cálcio/farmacologia , Norepinefrina/farmacologia , Canais de Potássio/agonistas , Células Piramidais/efeitos dos fármacos , Animais , Colforsina/farmacologia , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Interações Medicamentosas , Técnicas In Vitro , Células Piramidais/metabolismo , Ratos , Ratos Wistar , Tionucleotídeos/farmacologia , Fatores de Tempo
11.
Pflugers Arch ; 431(5): 723-8, 1996 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-8596722

RESUMO

Muscarinic and metabotropic glutamate receptor agonists increase the excitability of hippocampal and other cortical neurons by suppressing the Ca2+-activated K+current, IAHP, which underlies the slow afterhyperpolarization (AHP) and spike frequency adaptation. We have examined the mechanism of action of a muscarinic agonist (carbachol) and a metabotropic glutamate receptor agonist (1-Aminocyclopentane-trans-1,3-dicarboxylic acid; t-ACPD) on IAHP in hippocampal CA1 neurons in slices, by using highly specific protein kinase inhibitors. We found that inhibition of protein kinase A (PKA) with the adenosine 3',5'-cyclic monophosphate (cAMP) analogue Rp-adenosine-3',5'-cyclic phosphorothioate Rp-cAMPS, did not prevent the muscarinic and glutamatergic suppression of IAHP. In contrast, two specific peptide inhibitors of Ca2+/calmodulin-dependent protein kinase II (CaM-K II), each partially blocked the effect of carbachol, but not the effect of t-ACPD on IAHP. We conclude that CaM-K II, but not PKA, is involved in mediating the muscarinic suppression of IAHP, although other pathways may also contribute. In contrast, neither CaM-K II nor PKA seems to mediate the metabotropic glutamate receptor action on IAHP.


Assuntos
Acetilcolina/farmacologia , Cálcio/farmacologia , Hipocampo/citologia , Neurônios/química , Canais de Potássio/fisiologia , Sequência de Aminoácidos , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/antagonistas & inibidores , Carbacol/farmacologia , Cricetinae , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Cicloleucina/análogos & derivados , Cicloleucina/farmacologia , Dados de Sequência Molecular , Ratos , Ratos Wistar , Receptores de Glutamato Metabotrópico/agonistas , Transdução de Sinais
12.
Proc Natl Acad Sci U S A ; 92(25): 11716-20, 1995 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-8524835

RESUMO

Ion channels underlying the electrical activity of neurons can be regulated by neurotransmitters via two basic mechanisms: ligand binding and covalent modification. Whereas neurotransmitters often act by binding directly to ion channels, the intracellular messenger cyclic AMP is thought usually to act indirectly, by activating protein kinase A, which in turn can phosphorylate channel proteins. Here we show that cyclic AMP, and transmitters acting via cyclic AMP, can act in a protein kinase A-independent manner in the brain. In hippocampal pyramidal cells, cyclic AMP and norepinephrine were found to cause a depolarization by enhancing the hyperpolarization-activated mixed cation current, IQ (also called Ih). This effect persisted even after protein kinase A activity was blocked, thus strongly suggesting a kinase-independent action of cyclic AMP. The modulation of this current by ascending monoaminergic fibers from the brainstem is likely to be a widespread mechanism, participating in the state control of the brain during arousal and attention.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação do Canal Iônico , Canais Iônicos/metabolismo , Células Piramidais/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Animais , Cátions/metabolismo , Membrana Celular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Condutividade Elétrica , Inibidores Enzimáticos/farmacologia , Norepinefrina/farmacologia , Células Piramidais/efeitos dos fármacos , Ratos , Ratos Wistar
13.
J Neurophysiol ; 74(6): 2749-53, 1995 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8747230

RESUMO

1. The effects of dopamine on the slow Ca(2+)-dependent K+ current (IAHP; AHP, afterhyperpolarization) and spike frequency adaptation were studied by whole cell voltage-clamp and sharp microelectrode current-clamp recordings in rat CA1 pyramidal neurons in rat hippocampal slices. 2. Dopamine suppressed IAHP in a dose-dependent manner, under whole cell voltage-clamp conditions. Similarly, under current-clamp conditions, dopamine inhibited spike frequency adaptation and suppressed the slow afterhyperpolarization. 3. The effect of dopamine on IAHP was mimicked by a D1 receptor agonist and blocked by dopamine receptor antagonists only in a minority of the cells. 4. Dopamine suppressed IAHP after blocking or desensitizing the beta-adrenergic receptors and, hence, did not act by cross-reacting with this receptor type. 5. The effects of dopamine on IAHP and spike frequency adaptation were suppressed by blocking the adenosine 3',5'-cyclic monophosphate (cAMP)-dependent kinase (PKA) with Rp-cAMPS and, hence, are probably mediated by the activation of this kinase. 6. We conclude that dopamine increases hippocampal neuron excitability, like other monoamine neurotransmitters, by suppressing IAHP and spike frequency adaptation, via cAMP and protein kinase A. The receptor type mediating this effect of dopamine remains to be defined.


Assuntos
Cálcio/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Dopamina/fisiologia , Hipocampo/fisiologia , Canais de Potássio/fisiologia , Células Piramidais/fisiologia , Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Dopamina/farmacologia , Antagonistas dos Receptores de Dopamina D2 , Estimulação Elétrica , Hipocampo/citologia , Hipocampo/enzimologia , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp , Canais de Potássio/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Células Piramidais/enzimologia , Ratos , Ratos Wistar , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D2/agonistas , Proteínas Recombinantes/farmacologia
14.
Neuron ; 11(6): 1023-35, 1993 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8274274

RESUMO

The Ca(2+)-activated K+ current IAHP, which underlies spike frequency adaptation in cortical pyramidal cells, can be modulated by multiple transmitters and probably contributes to state control of the forebrain by ascending monoaminergic fibers. Here, we show that the modulation of this current by norepinephrine, serotonin, and histamine is mediated by protein kinase A in hippocampal CA1 neurons. Two specific protein kinase A inhibitors, Rp-cAMPS and Walsh peptide, suppressed the effects of these transmitters on IAHP and spike frequency adaptation. The effects of the cyclic AMP analog 8CPT-cAMP were also inhibited, whereas muscarinic and metabotropic glutamate receptor agonists had full effect. Intracellular application of protein kinase A catalytic subunit or a phosphatase inhibitor mimicked the effects of monoamines or 8CPT-cAMP. These results demonstrate that monoaminergic modulation of neuronal excitability in the mammalian CNS is mediated by protein phosphorylation.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hipocampo/fisiologia , Histamina/farmacologia , Neurônios/fisiologia , Norepinefrina/farmacologia , Canais de Potássio/fisiologia , Serotonina/farmacologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , AMP Cíclico/análogos & derivados , AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Hipocampo/enzimologia , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intercelular , Cinética , Dados de Sequência Molecular , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Peptídeos/farmacologia , Canais de Potássio/efeitos dos fármacos , Tratos Piramidais/efeitos dos fármacos , Tratos Piramidais/enzimologia , Tratos Piramidais/fisiologia , Ratos , Ratos Wistar , Tionucleotídeos/farmacologia , Fatores de Tempo
15.
EMBO J ; 11(7): 2473-86, 1992 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-1378392

RESUMO

Previously, we characterized a Shaker-related family of voltage-gated potassium channels (RCK) in rat brain. Now, we describe a second family of voltage-gated potassium channels in the rat nervous system. This family is related to the Drosophila Shaw gene and has been dubbed Raw. In contrast to the RCK potassium channel family the Raw family utilizes extensive alternative splicing for expressing potassium channel subunits with variant C-termini. These alternative C-termini do not appear to influence the electrophysiological and pharmacological properties as studied in the Xenopus oocyte expression system. In situ hybridizations to sections of rat brain indicate that members of the Raw family are expressed in distinct areas of the central nervous system. Probably, Raw channels are expressed predominantly as homomultimers. Immunocytochemical experiments with antibodies against Raw3 and RCK4 proteins which form two distinct A-type potassium channels indicate that in hippocampus the two channels are expressed both in different neurons and in the same ones. In general, properties of Raw potassium channels appeared to be similar to RCK channels. However, Raw outward currents, in contrast to RCK currents, exhibit an intense rectification at test potentials higher than +20 to +40 mV. RCK and Raw channel subunits did not measurably coassemble into RCK/Raw heteromultimers after coinjecting RCK and Raw cRNA into Xenopus oocytes. These results suggest that members of the RCK and the Raw potassium channel families express potassium channels which form independent outward current systems. Combining the results of in situ hybridizations, immunocytochemical staining and expression of the cloned potassium channels in Xenopus oocytes demonstrates that unrestrained mixing of potassium channel subunits to form hybrid channels does not occur in the rat central nervous system. A single neuron is able to express multiple, independently assembled potassium channels.


Assuntos
Encéfalo/metabolismo , Proteínas de Drosophila , Hormônios de Inseto/genética , Proteínas do Tecido Nervoso/genética , Canais de Potássio/genética , Sequência de Aminoácidos , Animais , Autorradiografia , Sequência de Bases , Northern Blotting , DNA , Imuno-Histoquímica , Hormônios de Inseto/metabolismo , Ativação do Canal Iônico , Potenciais da Membrana , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Canais de Potássio/metabolismo , RNA/metabolismo , Ratos , Ratos Endogâmicos , Alinhamento de Sequência , Canais de Potássio Shaw , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...