Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(3): 1593-1606, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36626587

RESUMO

Gene regulation via chemically induced dimerization (CID) is useful for biomedical research. However, the number, type, versatility, and in vivo applications of CID tools remain limited. Here, we demonstrate the development of proteolysis-targeting chimera-based scalable CID (PROTAC-CID) platforms by systematically engineering the available PROTAC systems for inducible gene regulation and gene editing. Further, we show orthogonal PROTAC-CIDs that can fine-tune gene expression at gradient levels or multiplex biological signals with different logic gating operations. Coupling the PROTAC-CID platform with genetic circuits, we achieve digitally inducible expression of DNA recombinases, base- and prime-editors for transient genome manipulation. Finally, we package a compact PROTAC-CID system into adeno-associated viral vectors for inducible and reversible gene activation in vivo. This work provides a versatile molecular toolbox that expands the scope of chemically inducible gene regulation in human cells and mice.


Assuntos
DNA , Recombinases , Humanos , Camundongos , Animais , Dimerização , DNA/metabolismo , Recombinases/metabolismo , Edição de Genes , Genoma , Sistemas CRISPR-Cas , Mamíferos/genética , Mamíferos/metabolismo
2.
Nat Chem Biol ; 19(1): 45-54, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36138140

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 13 (Cas13) has been rapidly developed for nucleic-acid-based diagnostics by using its characteristic collateral activity. Despite the recent progress in optimizing the Cas13 system for the detection of nucleic acids, engineering Cas13 protein with enhanced collateral activity has been challenging, mostly because of its complex structural dynamics. Here we successfully employed a novel strategy to engineer the Leptotrichia wadei (Lwa)Cas13a by inserting different RNA-binding domains into a unique active-site-proximal loop within its higher eukaryotes and prokaryotes nucleotide-binding domain. Two LwaCas13a variants showed enhanced collateral activity and improved sensitivity over the wild type in various buffer conditions. By combining with an electrochemical method, our variants detected the SARS-CoV-2 genome at attomolar concentrations from both inactive viral and unextracted clinical samples, without target preamplification. Our engineered LwaCas13a enzymes with enhanced collateral activity are ready to be integrated into other Cas13a-based platforms for ultrasensitive detection of nucleic acids.


Assuntos
COVID-19 , Ácidos Nucleicos , Humanos , SARS-CoV-2/genética , Ácidos Nucleicos/genética , Genoma , Sistemas CRISPR-Cas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...