Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 10(467)2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30429357

RESUMO

Oral administration of therapeutic peptides is hindered by poor absorption across the gastrointestinal barrier and extensive degradation by proteolytic enzymes. Here, we investigated the absorption of orally delivered semaglutide, a glucagon-like peptide-1 analog, coformulated with the absorption enhancer sodium N-[8-(2-hydroxybenzoyl) aminocaprylate] (SNAC) in a tablet. In contrast to intestinal absorption usually seen with small molecules, clinical and preclinical dog studies revealed that absorption of semaglutide takes place in the stomach, is confined to an area in close proximity to the tablet surface, and requires coformulation with SNAC. SNAC protects against enzymatic degradation via local buffering actions and only transiently enhances absorption. The mechanism of absorption is shown to be compound specific, transcellular, and without any evidence of effect on tight junctions. These data have implications for understanding how highly efficacious and specific therapeutic peptides could be transformed from injectable to tablet-based oral therapies.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Peptídeos Semelhantes ao Glucagon/farmacologia , Absorção Intestinal , Estômago/fisiologia , Administração Oral , Adolescente , Adulto , Idoso , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cães , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/ultraestrutura , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Peptídeos Semelhantes ao Glucagon/administração & dosagem , Peptídeos Semelhantes ao Glucagon/farmacocinética , Humanos , Concentração de Íons de Hidrogênio , Masculino , Pessoa de Meia-Idade , Ratos , Estômago/efeitos dos fármacos , Fatores de Tempo , Adulto Jovem
2.
Mol Pharm ; 12(7): 2245-53, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-25874852

RESUMO

The purpose of the present study was to investigate the interaction of intestinal permeation enhancers with lipid and surfactant components present in the milieu of the small intestine. Maltosides of different chain lengths (decyl-, dodecyl-, and tetradecyl-maltoside; DM, DDM, TDM, respectively) were used as examples of nonionic, surfactant-like permeation enhancers, and their effect on the permeation of FD4 across Caco-2 monolayers was monitored. To mimic the environment of the small intestine, modified versions of fasted and fed state simulated intestinal fluid (FaSSIFmod, FeSSIFmod6.5, respectively) were used in addition to standard transport media (TM). Compared to the buffer control, 0.5 mM DDM led to a 200-fold permeation enhancement of FD4 in TM. However, this was dramatically decreased in FaSSIFmod, where a concentration of 5 mM DDM was necessary in order to elicit a moderate, 4-fold, permeation enhancement. Its capacity to promote permeation was diminished further when FeSSIFmod6.5 was employed. Even when cells were exposed to a concentration of 5 mM, no significant permeation enhancement of FD4 was observed. Analogous effects were observed in the case of DM and TDM, with slight deviations on account of differences in their critical micelle concentration (CMC). This observation was corroborated by calculating the amount of maltoside monomer versus micellar bound maltoside in FaSSIFmod and FeSSIFmod6.5, which demonstrated a reduced amount of free monomer in these fluids. To evaluate the in vivo significance of our findings, DDM solutions in TM, FaSSIFmod, and FeSSIFmod6.5 were used for closed intestinal loop studies in rats. Consistent with the results found in in vitro permeation studies, these investigations illustrated the overwhelming impact of sodium taurocholate/lecithin micelles on the permeation enhancing effect of DDM. While DDM led to a 20-fold increase in FD4 bioavailability when it was applied in TM, no significant permeation enhancement was seen in FaSSIFmod/FeSSIFmod6.5. Collectively, these investigations highlight the importance of using biorelevant media when evaluating the potency of permeation enhancers. In doing so, this ensures improved correlations between in vitro and in vivo studies and thus enables an early and more accurate assessment of promising permeation enhancers.


Assuntos
Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Maltose/análogos & derivados , Animais , Disponibilidade Biológica , Células CACO-2 , Humanos , Lecitinas/química , Masculino , Maltose/química , Micelas , Permeabilidade , Ratos , Ratos Sprague-Dawley , Tensoativos/química , Ácido Taurocólico/química
3.
Pharm Dev Technol ; 13(5): 375-86, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18720236

RESUMO

The main purpose of this study was to obtain stable, well-characterized solid dispersions (SDs) of amorphous probucol and polyvinylpyrrolidone K-30 (PVP-K30) with improved dissolution rates. A secondary aim was to investigate the flow-through dissolution method for in-vitro dissolution measurements of small-sized amorphous powders dispersed in a hydrophilic polymer. SDs were prepared by spray drying solutions of probucol and different amounts of PVP-K30. The obtained SDs were characterized by dissolution rate measurements in a flow-through apparatus, X-ray Powder Diffraction (XRPD), Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM), particle sizing (laser diffraction) and Brunauer-Emmett-Teller Method (BET) and results were compared with starting material and a physical mixture. The physical stability was monitored after storage at 25 degrees C and 60% RH for up to 12 weeks. The flow-through method was found suitable as dissolution method. All SDs showed improved in-vitro dissolution rates when compared to starting material and physical mixtures. The greatest improvement in the in-vitro dissolution rate was observed for the highest polymer to drug ratio. By means of the results from XRPD and DSC, it was argued that the presence of amorphous probucol improved the dissolution rate, but the amorphous state could not fully account for the difference in dissolution profiles between the SDs. It was suggested that the increase in surface area due to the reduction in particle size contributed to an increased dissolution rate as well as the presence of PVP-K30 by preventing aggregation and drug re-crystallization and by improving wettability during dissolution. The stabilizing effect of the polymer was verified in the solid state, as all the SDs retained probucol in the amorphous state throughout the entire length of the stability study.


Assuntos
Anticolesterolemiantes/química , Excipientes/química , Povidona/química , Probucol/química , Química Farmacêutica/métodos , Cristalização , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Umidade , Tamanho da Partícula , Pós , Solubilidade , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...