Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 185: 116227, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32736284

RESUMO

Long-term, continuous datasets of high quality are important for instrumentation, control, and automation efforts of wastewater resources recovery facility (WRRFs). This study presents a methodology to increase the reliability of measurements from ammonium ion-selective electrodes (ISEs). This is done by correcting corrupted ISE data with a data source that often is available at WRRFs (volume-proportional composite samples). A yearlong measurement campaign showed that the existing standard protocols for sensor maintenance might still create corrupted dataset, with poor sensor recalibrations responsible for abrupt and unrealistic jumps in the measurements. The proposed automatic correction methodology removes both recalibration jumps and signal drift by using information from composite samples that already are taken for reporting to legal authorities. Results showed that the developed methodology provided a continuous, high-quality time series without the major data quality issues of the original signal. In fact, the signal was improved for 87% of days when a reference sample was available. The effect of correcting the data before use in a data-driven software sensor was also investigated. The corrected dataset led to noticeably smaller day-to-day variations in estimated NH4+ loads, and to large improvements on both median estimates and prediction bounds. The long time series allowed for an investigation of how much training data that is required to fit a software sensor, which provides estimates that are representative for the entire study period. The results showed that 8 weeks of data allowed for a good median estimate, while 16 weeks are required for obtaining good 80% prediction bounds. Overall, the proposed method can increase the applicability of relatively cheaper ISE sensors for ICA application within WRRFs.


Assuntos
Compostos de Amônio , Águas Residuárias , Eletrodos Seletivos de Íons , Reprodutibilidade dos Testes
2.
Water Sci Technol ; 81(1): 109-120, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32293594

RESUMO

A simple model for online forecasting of ammonium (NH4 +) concentrations in sewer systems is proposed. The forecast model utilizes a simple representation of daily NH4 + profiles and the dilution approach combined with information from online NH4 + and flow sensors. The method utilizes an ensemble approach based on past observations to create model prediction bounds. The forecast model was tested against observations collected at the inlet of two wastewater treatment plants (WWTPs) over an 11-month period. NH4 + data were collected with ion-selective sensors. The model performance evaluation focused on applications in relation to online control strategies. The results of the monitoring campaigns highlighted a high variability in daily NH4 + profiles, stressing the importance of an uncertainty-based modelling approach. The maintenance of the NH4 + sensors resulted in important variations of the sensor signal, affecting the evaluation of the model structure and its performance. The forecast model succeeded in providing outputs that potentially can be used for integrated control of wastewater systems. This study provides insights on full scale application of online water quality forecasting models in sewer systems. It also highlights several research gaps which - if further investigated - can lead to better forecasts and more effective real-time operations of sewer and WWTP systems.


Assuntos
Compostos de Amônio , Baías , Previsões , Modelos Teóricos , Águas Residuárias , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...