Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Evol Biol ; 19(1): 38, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30700248

RESUMO

BACKGROUND: Many physiological processes are influenced by nicotinic acetylcholine receptors (nAChR), ranging from neuromuscular and parasympathetic signaling to modulation of the reward system and long-term memory. Due to the complexity of the nAChR family and variable evolutionary rates among its members, their evolution in vertebrates has been difficult to resolve. In order to understand how and when the nAChR genes arose, we have used a broad approach of analyses combining sequence-based phylogeny, chromosomal synteny and intron positions. RESULTS: Our analyses suggest that there were ten subunit genes present in the vertebrate predecessor. The two basal vertebrate tetraploidizations (1R and 2R) then expanded this set to 19 genes. Three of these have been lost in mammals, resulting in 16 members today. None of the ten ancestral genes have kept all four copies after 2R. Following 2R, two of the ancestral genes became triplicates, five of them became pairs, and three seem to have remained single genes. One triplet consists of CHRNA7, CHRNA8 and the previously undescribed CHRNA11, of which the two latter have been lost in mammals but are still present in lizards and ray-finned fishes. The other triplet consists of CHRNB2, CHRNB4 and CHRNB5, the latter of which has also been lost in mammals. In ray-finned fish the neuromuscular subunit gene CHRNB1 underwent a local gene duplication generating CHRNB1.2. The third tetraploidization in the predecessor of teleosts (3R) expanded the repertoire to a total of 31 genes, of which 27 remain in zebrafish. These evolutionary relationships are supported by the exon-intron organization of the genes. CONCLUSION: The tetraploidizations explain all gene duplication events in vertebrates except two. This indicates that the genome doublings have had a substantial impact on the complexity of this gene family leading to a very large number of members that have existed for hundreds of millions of years.


Assuntos
Evolução Molecular , Receptores Nicotínicos/genética , Vertebrados/genética , Animais , Sequência de Bases , Cromossomos/genética , Éxons/genética , Duplicação Gênica , Humanos , Íntrons/genética , Funções Verossimilhança , Filogenia , Poliploidia , Subunidades Proteicas/genética , Sintenia/genética , Fatores de Tempo
2.
eNeuro ; 5(5)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564629

RESUMO

The family of muscarinic acetylcholine receptors (mAChRs) consists of five members in mammals, encoded by the CHRM1-5 genes. The mAChRs are G-protein-coupled receptors, which can be divided into the following two subfamilies: M2 and M4 receptors coupling to Gi/o; and M1, M3, and M5 receptors coupling to Gq/11. However, despite the fundamental roles played by these receptors, their evolution in vertebrates has not yet been fully described. We have combined sequence-based phylogenetic analyses with comparisons of exon-intron organization and conserved synteny in order to deduce the evolution of the mAChR receptors. Our analyses verify the existence of two ancestral genes prior to the two vertebrate tetraploidizations (1R and 2R). After these events, one gene had duplicated, resulting in CHRM2 and CHRM4; and the other had triplicated, forming the CHRM1, CHRM3, and CHRM5 subfamily. All five genes are still present in all vertebrate groups investigated except the CHRM1 gene, which has not been identified in some of the teleosts or in chicken or any other birds. Interestingly, the third tetraploidization (3R) that took place in the teleost predecessor resulted in duplicates of all five mAChR genes of which all 10 are present in zebrafish. One of the copies of the CHRM2 and CHRM3 genes and both CHRM4 copies have gained introns in teleosts. Not a single separate (nontetraploidization) duplicate has been identified in any vertebrate species. These results clarify the evolution of the vertebrate mAChR family and reveal a doubled repertoire in zebrafish, inviting studies of gene neofunctionalization and subfunctionalization.


Assuntos
Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M3/metabolismo , Receptores Colinérgicos/metabolismo , Receptores Muscarínicos/metabolismo , Animais , Humanos , Filogenia , Receptor Muscarínico M4/metabolismo , Vertebrados/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...