Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 134: 105337, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35863296

RESUMO

We present a constrained mixture-micturition-growth (CMMG) model for the bladder. It simulates bladder mechanics, voiding function (micturition) and tissue adaptations in response to altered biomechanical conditions. The CMMG model is calibrated with both in vivo and in vitro data from healthy male rat urinary bladders (cystometry, bioimaging of wall structure, mechanical testing) and applied to simulate the growth and remodeling (G&R) response to partial bladder outlet obstruction (BOO). The bladder wall is represented as a multi-layered, anisotropic, nonlinear constrained mixture. A short time scale micturition component of the CMMG model accounts for the active and passive mechanics of voiding. Over a second, longer time scale, G&R algorithms for the evolution of both cellular and extracellular constituents act to maintain/restore bladder (homeostatic) functionality. The CMMG model is applied to a spherical membrane model of the BOO bladder utilizing temporal data from an experimental male rodent model to parameterize and then verify the model. Consistent with the experimental studies of BOO, the model predicts: an initial loss of voiding capacity followed by hypertrophy of SMC to restore voiding function; bladder enlargement; collagen remodeling to maintain its role as a protective sheath; and increased voiding duration with lower average flow rate. This CMMG model enables a mechanistic approach for investigating the bladder's structure-function relationship and its adaption in pathological conditions. While the approach is illustrated with a conceptual spherical bladder model, it provides the basis for application of the CMMG model to anatomical geometries. Such a mechanistic approach has promise as an in silico tool for the rational development of new surgical and pharmacological treatments for bladder diseases such as BOO.


Assuntos
Obstrução do Colo da Bexiga Urinária , Animais , Modelos Animais de Doenças , Guanina/análogos & derivados , Masculino , Ratos , Bexiga Urinária , Obstrução do Colo da Bexiga Urinária/patologia , Micção/fisiologia , Urodinâmica
2.
Front Cardiovasc Med ; 8: 735008, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746253

RESUMO

The current management of acute coronary syndromes (ACS) is with an invasive strategy to guide treatment. However, identifying the lesions which are physiologically significant can be challenging. Non-invasive imaging is generally not appropriate or timely in the acute setting, so the decision is generally based upon visual assessment of the angiogram, supplemented in a small minority by invasive pressure wire studies using fractional flow reserve (FFR) or related indices. Whilst pressure wire usage is slowly increasing, it is not feasible in many vessels, patients and situations. Limited evidence for the use of FFR in non-ST elevation (NSTE) ACS suggests a 25% change in management, compared with traditional assessment, with a shift from more to less extensive revascularisation. Virtual (computed) FFR (vFFR), which uses a 3D model of the coronary arteries constructed from the invasive angiogram, and application of the physical laws of fluid flow, has the potential to be used more widely in this situation. It is less invasive, fast and can be integrated into catheter laboratory software. For severe lesions, or mild disease, it is probably not required, but it could improve the management of moderate disease in 'real time' for patients with non-ST elevation acute coronary syndromes (NSTE-ACS), and in bystander disease in ST elevation myocardial infarction. Its practicability and impact in the acute setting need to be tested, but the underpinning science and potential benefits for rapid and streamlined decision-making are enticing.

3.
Sci Rep ; 11(1): 19694, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34608218

RESUMO

Three dimensional (3D) coronary anatomy, reconstructed from coronary angiography (CA), is now being used as the basis to compute 'virtual' fractional flow reserve (vFFR), and thereby guide treatment decisions in patients with coronary artery disease (CAD). Reconstruction accuracy is therefore important. Yet the methods required remain poorly validated. Furthermore, the magnitude of vFFR error arising from reconstruction is unkown. We aimed to validate a method for 3D CA reconstruction and determine the effect this had upon the accuracy of vFFR. Clinically realistic coronary phantom models were created comprosing seven standard stenoses in aluminium and 15 patient-based 3D-printed, imaged with CA, three times, according to standard clinical protocols, yielding 66 datasets. Each was reconstructed using epipolar line projection and intersection. All reconstructions were compared against the real phantom models in terms of minimal lumen diameter, centreline and surface similarity. 3D-printed reconstructions (n = 45) and the reference files from which they were printed underwent vFFR computation, and the results were compared. The average error in reconstructing minimum lumen diameter (MLD) was 0.05 (± 0.03 mm) which was < 1% (95% CI 0.13-1.61%) compared with caliper measurement. Overall surface similarity was excellent (Hausdorff distance 0.65 mm). Errors in 3D CA reconstruction accounted for an error in vFFR of ± 0.06 (Bland Altman 95% limits of agreement). Errors arising from the epipolar line projection method used to reconstruct 3D coronary anatomy from CA are small but contribute to clinically relevant errors when used to compute vFFR.


Assuntos
Angiografia Coronária/métodos , Vasos Coronários/diagnóstico por imagem , Reserva Fracionada de Fluxo Miocárdico , Imageamento Tridimensional , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/etiologia , Vasos Coronários/fisiopatologia , Humanos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...