Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1250: 340952, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36898809

RESUMO

The present work explores for the first time the potential of formic acid on the extraction of tiemannite (HgSe) nanoparticles from seabird tissues, in particular giant petrels. Mercury (Hg) is considered one of the top ten chemicals of major public health concern. However, the fate and metabolic pathways of Hg in living organisms remain unknown. Methylmercury (MeHg), largely produced by microbial activity in the aquatic ecosystems is biomagnified in the trophic web. HgSe is considered the end-product of MeHg demethylation in biota and an increasing number of studies focuses on the characterization of this solid compound to understand its biomineralization. In this study, a conventional enzymatic treatment is compared with a simpler and environmentally friendly extraction by using formic acid (5 mL of = 50 % formic acid) as exclusive reagent. The analyses by spICP-MS of the resulting extracts from a variety of seabird biological tissues (liver, kidneys, brain, muscle) reveal comparable results by both extraction approaches in terms of nanoparticles stability and extraction efficiency. Therefore, the results included in this work demonstrate the good performance of employing organic acid as simple, cost effective and green procedure to extract HgSe nanoparticles from animal tissues. Moreover, an alternative consisting of a classical enzymatic procedure but with ultrasonic assistance reducing the extraction time from 12 h to 2 min is also described for the first time. The sample processing methodologies developed, combined with spICP-MS, have emerged as powerful tools for the rapid screening and quantification of HgSe nanoparticles in animal tissues. Finally, this combination allowed us to identify the possible occurrence of Cd particles and As particles associated with HgSe NPs in seabirds.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Nanopartículas , Selênio , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Selênio/química , Poluentes Químicos da Água/análise , Mercúrio/análise
2.
Metallomics ; 4(5): 473-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22456936

RESUMO

A novel analytical procedure for the identification of metal (Hg, Cd, Cu, Zn) complexes with individual metallothionein (MT) isoforms in biological tissues by electrospray MS/MS was developed. The sample preparation was reduced to three rapid steps: the two-fold dilution of the sample cytosol with acetonitrile, the recovery of the supernatant containing MT-complexes by centrifugation and its concentration under nitrogen flow. The replacement of reversed phase HPLC by hydrophilic interaction LC (HILIC) allowed the preservation of the unstable and low abundant metallothionein zinc-mercury mixed complexes (MT-Zn(6)Hg). The MT complexes eluted were detected by ICP MS and identified in terms of molecular mass by electrospray high resolution (100,000) MS. The identification was completed by on line demetallation and the determination of the molecular mass of the apoform, followed by amino acid sequencing in the top-down mode using high energy collision fragmentation (HCD). The method was applied to the identification of MT complexes in a white-sided dolphin (Lagenorhynchus acutus) liver homogenate. The Zn complex of the N-acetylated MT2 isoform was found to be predominant, the presence of mixed complexes with Cd, Cu and, for the first time ever, Hg, was demonstrated. The latter finding has the potential to shed new light on the mercury detoxification mechanism in marine organisms.


Assuntos
Cromatografia Líquida/métodos , Golfinhos/metabolismo , Fígado/química , Mercúrio/análise , Metalotioneína/química , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Animais , Interações Hidrofóbicas e Hidrofílicas , Fígado/metabolismo , Mercúrio/química , Metais Pesados/análise , Metais Pesados/química , Dados de Sequência Molecular , Alinhamento de Sequência , Espectrometria de Massas por Ionização por Electrospray
3.
Anal Bioanal Chem ; 390(2): 629-42, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17938894

RESUMO

Results of an international intercomparison study (CCQM-P86) to assess the analytical capabilities of national metrology institutes (NMIs) and selected expert laboratories worldwide to accurately quantitate the mass fraction of selenomethionine (SeMet) and total Se in pharmaceutical tablets of selenised-yeast supplements (produced by Pharma Nord, Denmark) are presented. The study, jointly coordinated by LGC Ltd., UK, and the Institute for National Measurement Standards, National Research Council of Canada (NRCC), was conducted under the auspices of the Comité Consultatif pour la Quantité de Matière (CCQM) Inorganic Analysis Working Group and involved 15 laboratories (from 12 countries), of which ten were NMIs. Apart from a protocol for determination of moisture content and the provision of the certified reference material (CRM) SELM-1 to be used as the quality control sample, no sample preparation/extraction method was prescribed. A variety of approaches was thus used, including single-step and multiple-step enzymatic hydrolysis, enzymatic probe sonication and hydrolysis with methanesulfonic acid for SeMet, as well as microwave-assisted acid digestion and enzymatic probe sonication for total Se. For total Se, detection techniques included inductively coupled plasma (ICP) mass spectrometry (MS) with external calibration, standard additions or isotope dilution MS (IDMS), inductively coupled plasma optical emission spectrometry , flame atomic absorption spectrometry and instrumental neutron activation analysis. For determination of SeMet in the tablets, five NMIs and three academic/institute laboratories (of a total of five) relied upon measurements using IDMS. For species-specific IDMS measurements, an isotopically enriched standard of SeMet (76Se-enriched SeMet) was made available. A novel aspect of this study relies on the approach used to distinguish any errors which arise during analysis of a SeMet calibration solution from those which occur during analysis of the matrix. To help those participants undertaking SeMet analysis to do this, a blind sample in the form of a standard solution of natural abundance SeMet in 0.1 M HCl (with an expected value of 956 mg kg(-1) SeMet) was provided. Both high-performance liquid chromatography (HPLC)-ICP-MS or gas chromatography (GC)-ICP-MS and GC-MS techniques were used for quantitation of SeMet. Several advances in analytical methods for determination of SeMet were identified, including the combined use of double IDMS with HPLC-ICP-MS following extraction with methanesulfonic acid and simplified two-step enzymatic hydrolysis with protease/lipase/driselase followed by HPLC-ICP-IDMS, both using a species-specific IDMS approach. Overall, satisfactory agreement amongst participants was achieved; results averaged 337.6 mg kg(-1) (n = 13, with a standard deviation of 9.7 mg kg(-1)) and 561.5 mg kg(-1) (n = 11, with a standard deviation of 44.3 mg kg(-1)) with median values of 337.6 and 575.0 mg kg(-1) for total Se and SeMet, respectively. Recovery of SeMet from SELM-1 averaged 95.0% (n = 9). The ability of NMIs and expert laboratories worldwide to deliver accurate results for total Se and SeMet in such materials (selensied-yeast tablets containing approximately 300 mg kg(-1) Se) with 10% expanded uncertainty was demonstrated. The problems addressed in achieving accurate quantitation of SeMet in this product are representative of those encountered with a wide range of organometallic species in a number of common matrices.


Assuntos
Selênio/análise , Selenometionina/análise , Avaliação da Tecnologia Biomédica/métodos , Fermento Seco/química , Soluções , Comprimidos/análise , Avaliação da Tecnologia Biomédica/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...