Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Nanotechnol ; 12(4): 630-44, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27301190

RESUMO

Despite the advantages of liposomal drug delivery, the bioavailability of the chemotherapeutic drugs to tumor cells is limited by their slow release from nanocarriers and low drug permeability across cell membranes. Drug encapsulation into stealth thermosensitive liposomes can improve drug delivery to tumors by combining efficient accumulation at tumors and the active release of the payload following remote heat triggering. Short-chain sphingolipids are known to enhance cellular uptake of amphiphilic drugs. We hypothesized that short-chain sphingolipids could be utilized to further improve intracellular drug delivery from a thermoresponsive formulation by enhancing the cell membrane passage of released drug. The following two strategies were investigated: (1) co-delivery of C8-glucosylceramide and doxorubicin within the thermosensitive liposomes and (2) pretreatment with glucosylceramide-enriched drug-free liposomes and subsequent treatment with doxorubicin loaded thermosensitive liposomes. Liposomes were prepared and extensively characterized. Drug uptake, cell cytotoxicity and live cell imaging were performed under normothermic and hyperthermic conditions in melanoma cells. In these studies, hyperthermia improved drug delivery from doxorubicin loaded thermosensitive formulations. However, the results from cell experiments indicated that there was no additional benefit in the co-delivery strategy using doxorubicin loaded glucosylceramide-enriched thermosensitive liposomes. In contrast, cellular studies showed significantly higher doxorubicin internalization in the pretreatment strategy. One-hour exposure of the cells to C8-glucosylceramide before applying hyperthermia caused improved doxorubicin uptake and cytotoxicity as well as an almost instantaneous cellular entry of the doxorubicin released from thermosensitive liposomes. This novel, two-step drug delivery approach can be potentially beneficial for the intracellular delivery of cell impermeable chemotherapeutics.


Assuntos
Preparações de Ação Retardada/síntese química , Doxorrubicina/administração & dosagem , Lipossomos/química , Nanocápsulas/química , Neoplasias Experimentais/tratamento farmacológico , Esfingolipídeos/química , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/química , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , Preparações de Ação Retardada/administração & dosagem , Difusão , Doxorrubicina/química , Humanos , Peso Molecular , Nanocápsulas/administração & dosagem , Neoplasias Experimentais/patologia , Temperatura
2.
Sci Rep ; 3: 1949, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23739489

RESUMO

Design and efficacy of bioactive drugs is restricted by their (in)ability to traverse cellular membranes. Therapy resistance, a major cause of ineffective cancer treatment, is frequently due to suboptimal intracellular accumulation of the drug. We report a molecular mechanism that promotes trans-membrane movement of a stereotypical, widely used anti-cancer agent to counteract resistance. Well-defined lipid analogues adapt to the amphiphilic drug doxorubicin, when co-inserted into the cell membrane, and assemble a transient channel that rapidly facilitates the translocation of the drug onto the intracellular membrane leaflet. Molecular dynamic simulations unveiled the structure and dynamics of membrane channel assembly. We demonstrate that this principle successfully addresses multi-drug resistance of genetically engineered mouse breast cancer models. Our results illuminate the role of the plasma membrane in restricting the efficacy of established therapies and drug resistance - and provide a mechanism to overcome ineffectiveness of existing and candidate drugs.


Assuntos
Antineoplásicos/farmacocinética , Membrana Celular/metabolismo , Resistencia a Medicamentos Antineoplásicos , Glicoesfingolipídeos/metabolismo , Animais , Antineoplásicos/administração & dosagem , Transporte Biológico , Linhagem Celular , Membrana Celular/química , Proliferação de Células , Modelos Animais de Doenças , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Feminino , Glicerofosfolipídeos/química , Glicerofosfolipídeos/metabolismo , Glicoesfingolipídeos/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipossomos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/mortalidade , Neoplasias Mamárias Experimentais/patologia , Camundongos , Modelos Biológicos , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...