Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38844633

RESUMO

Plastics are offering a new niche for microorganisms colonizing their surface, the so-called "plastisphere," in which diversity and community structure remain to be characterized and compared across ocean pelagic regions. Here, we compared the bacterial diversity of microorganisms living on plastic marine debris (PMD) and the surrounding free-living (FL) and organic particle-attached (PA) lifestyles sampled during the Tara expeditions in two of the most plastic polluted zones in the world ocean, i.e., the North Pacific gyre and the Mediterranean Sea. The 16S rRNA gene sequencing analysis confirmed that PMD are a new anthropogenic ocean habitat for marine microbes at the ocean-basin-scale, with clear niche partitioning compared to FL and PA lifestyles. At an ocean-basin-scale, the composition of the plastisphere communities was mainly driven by environmental selection, rather than polymer types or dispersal effect. A plastisphere "core microbiome" could be identified, mainly dominated by Rhodobacteraceae and Cyanobacteria. Predicted functions indicated the dominance of carbon, nitrogen and sulfur metabolisms on PMD that open new questions on the role of the plastisphere in a large number of important ecological processes in the marine ecosystem.

2.
Microorganisms ; 12(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38543496

RESUMO

Plastics in the ocean create the "plastisphere", a diverse habitat hosting various life forms. Other than the pollution induced by plastics, the co-occurrence of primary producers, symbiotic organisms, decomposers, and pathogens within the plastisphere raises questions about how they influence the dynamics of marine ecosystems. Here, we used a shotgun DNA-sequencing approach to describe the species thriving on floating plastics collected in two Mediterranean sites. Our findings revealed many species of bacteria, eukaryotes, viruses, and archaea on each plastic. Proteobacteria was dominant (70% of reads in the entire dataset), with other groups such as Ascomycota fungi (11%) and Bacteroidetes (9%) also being represented. The community structure was not affected by the polymeric composition or the plastic shape. Notably, pathogenic Vibrio species, including V. campbelli, V. alginolyticus, and V. coralliilyticus, were among the most abundant species. Viruses, despite showing lower relative abundances, occurred in all samples, especially Herpesvirales, Caudovirales, and Poxviridae groups. A significant finding was the presence of the White Spot Syndrome virus (WSSV). This pathogen, responsible for devastating outbreaks in aquaculture systems, had not been previously reported in the marine plastisphere. Our study emphasizes the need for further investigation into the ecological and economic impacts of plastisphere organisms in the ocean.

3.
Environ Pollut ; 348: 123808, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38521396

RESUMO

The term "Plastisphere" refers to the biofilm layer naturally formed by microorganisms attaching to plastic surfaces. This layer possesses the capability to adsorb persistent organic and inorganic pollutants, particularly trace metals, which are the focus of this research study. Immersion experiments were concurrently conducted in five locations spanning four European countries (France, Ireland, Spain, and Italy) utilising eight distinct polymers. These immersions, repeated every three months over a one-year period, aimed to evaluate the baseline bioaccumulation of 12 trace metals. The study underscores the intricate nature of metal bioaccumulation, influenced by both micro-scale factors (such as polymer composition) and macro-scale factors (including geographical site and seasonal variations). Villefranche Bay in France exhibited the lowest metals bioaccumulation, whereas Naples in Italy emerged as the site where bioaccumulation was often the highest for the considered metals. Environmental risk assessment was also conducted in the study. The lightweight nature of certain plastics allows them to be transported across significant distances in the ocean. Consequently, evaluating trace metal concentrations in the plastisphere is imperative for assessing potential environmental repercussions that plastics, along with their associated biota, may exert even in locations distant from their point of emission.


Assuntos
Poluentes Ambientais , Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Bioacumulação , Poluentes Químicos da Água/análise , Metais , França , Polímeros , Monitoramento Ambiental , Metais Pesados/análise , Plásticos
4.
Mar Pollut Bull ; 200: 116071, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290365

RESUMO

Tardigrades are remarkable microorganisms known for their extraordinary resilience in diverse environments, including extreme conditions such as outer space. They are known for their interactions with natural substrates in terrestrial and aquatic systems, but have remained largely unexplored in relation to marine plastics. This study aims to investigate the colonization of plastics, ranging from fossil fuel-based to bioplastics, in the coastal zones of four countries (Brazil, Ireland, France and Italy). Here, we report the first documented occurrence of tardigrades colonizing plastic substrates. We identified five amplicon sequence variants (ASVs) belonging to the Tardigrada phylum, specifically in a post-consumer polypropylene, in the coastal zone of Galway, Ireland. This discovery raises questions about the characteristics of different plastics influencing on tardigrades' adhesion. Tardigrades hitchhiking on plastics in the oceans could expand their habitat range, possibly displacing native species and altering trophic interactions, with potential consequences for the overall biodiversity.


Assuntos
Tardígrados , Animais , Plásticos , Oceanos e Mares , Polipropilenos , Ecossistema
6.
Microbiol Resour Announc ; 12(11): e0079423, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37855632

RESUMO

Here, we report the draft genome sequences of six marine strains isolated from plastic samples incubated in the Mediterranean Sea. Genomic analyses place these strains within the Alkalihalobacillus, Bacillus, Halomonas, and Marinobacter genera. Examining the genomes of these non-typical environmental bacteria increases our comprehension of microorganism biology and their potential uses.

7.
Sci Data ; 10(1): 324, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264023

RESUMO

The Tara Pacific expedition (2016-2018) sampled coral ecosystems around 32 islands in the Pacific Ocean and the ocean surface waters at 249 locations, resulting in the collection of nearly 58 000 samples. The expedition was designed to systematically study warm-water coral reefs and included the collection of corals, fish, plankton, and seawater samples for advanced biogeochemical, molecular, and imaging analysis. Here we provide a complete description of the sampling methodology, and we explain how to explore and access the different datasets generated by the expedition. Environmental context data were obtained from taxonomic registries, gazetteers, almanacs, climatologies, operational biogeochemical models, and satellite observations. The quality of the different environmental measures has been validated not only by various quality control steps, but also through a global analysis allowing the comparison with known environmental large-scale structures. Such publicly released datasets open the perspective to address a wide range of scientific questions.


Assuntos
Antozoários , Recifes de Corais , Animais , Ecossistema , Oceano Pacífico , Água do Mar
8.
Environ Sci Technol ; 57(19): 7503-7515, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37125732

RESUMO

Plastic is a widespread marine pollutant, with most studies focusing on the distribution of floating plastic debris at the sea surface. Recent evidence, however, indicates a significant presence of such low density plastic in the water column and at the seafloor, but information on its origin and dispersion is lacking. Here, we studied the pathways and fate of sinking plastic debris in the Mediterranean Sea, one of the most polluted world seas. We used a recent Lagrangian plastic-tracking model, forced with realistic parameters, including a maximum estimated sinking speed of 7.8 m/d. Our simulations showed that the locations where particles left the surface differed significantly from those where they reached the seafloor, with lateral transport distances between 119 and 282 km. Furthermore, 60% of particles deposited on the bottom coastal strip (20 km wide) were released from vessels, 20% from the facing country, and 20% from other countries. Theoretical considerations furthermore suggested that biological activities potentially responsible for the sinking of low density plastic occur throughout the water column. Our findings indicate that the responsibility for seafloor plastic pollution is shared among Mediterranean countries, with potential impact on pelagic and benthic biota.


Assuntos
Plásticos , Resíduos , Mar Mediterrâneo , Resíduos/análise , Monitoramento Ambiental , Água
9.
Ann Glob Health ; 89(1): 23, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969097

RESUMO

Background: Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals: The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure: This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics: Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle: The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings: Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings: Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings: Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbonmetric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings: The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions: It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations: To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary: This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.


Assuntos
Doenças Cardiovasculares , Disruptores Endócrinos , Retardadores de Chama , Gases de Efeito Estufa , Neoplasias Pulmonares , Doença Pulmonar Obstrutiva Crônica , Estados Unidos , Criança , Animais , Humanos , Masculino , Feminino , Pré-Escolar , Plásticos/toxicidade , Plásticos/química , Ecossistema , Mônaco , Microplásticos , Poluentes Orgânicos Persistentes , Disruptores Endócrinos/toxicidade , Carvão Mineral
10.
Mar Pollut Bull ; 185(Pt A): 114306, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36356342

RESUMO

The marine weathering of microplastics is spectrally characterized by the appearance of new bands that disturb our understanding of the information carried by the spectra. Yet, no explanation has been provided on the chemical origin of these new bands. Thus, the main objective of this work was to identify the origins of these additional bands. To this end, 4042 spectra of poly (styrene), poly(ethylene) and poly(propylene) microplastics collected in the Mediterranean Sea, were analysed using principal component analysis. The results showed that the spectral variability was mainly related to only three processes: chemical ageing, organic and inorganic fouling. These processes probably differ from one polymer family to another due to surface affinities. This work has also led to the proposal of two new polymer indices that could be used to monitor the intensity of (bio)fouling. Finally, the development of advanced analyses could also provide information on the nature of the plastisphere.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Espectroscopia de Infravermelho com Transformada de Fourier
11.
PLoS One ; 17(11): e0275284, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36449472

RESUMO

Microfibers, whether synthetic or natural, have increased dramatically in the environment, becoming the most common type of particles in the ocean, and exposing aquatic organisms to multiple negative impacts. Using an approach combining morphology (scanning electron microscopy-SEM) and molecular taxonomy (High-Throughput DNA Sequencing- HTS), we investigated the bacterial composition from floating microfibers (MFs) collected in the northwestern Mediterranean Sea. The average number of bacteria in 100 µm2 on the surface of a fiber is 8 ± 5.9 cells; by extrapolating it to a whole fiber, this represents 2663 ± 1981 bacteria/fiber. Attached bacterial communities were dominated by Alteromonadales, Rhodobacterales, and Vibrionales, including the potentially human/animal pathogen Vibrio parahaemolyticus. This study reveals a high rate of bacterial colonization on MFs, and shows that these particles can host numerous bacterial species, including putative pathogens. Even if we cannot confirm its pathogenicity based only on the taxonomy, this is the first description of such pathogenic Vibrio living attached to MFs in the Mediterranean Sea. The identification of MFs colonizers is valuable in assessing health risks, as their presence can be a threat to bathing and seafood consumption. Considering that MFs can serve as vector for potentially pathogenic microorganisms and other pollutants throughout the ocean, this type of pollution can have both ecological and economic consequences.


Assuntos
Gammaproteobacteria , Vibrio parahaemolyticus , Animais , Humanos , Mar Mediterrâneo , Bactérias/genética , Fibras na Dieta , Vibrio parahaemolyticus/genética , Grupos Raciais
12.
Sci Total Environ ; 838(Pt 1): 155958, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35580673

RESUMO

The Mediterranean Sea is recognized as one of the most polluted areas by floating plastics. During the Tara Mediterranean expedition, an extensive sampling of plastic debris was conducted in seven ecoregions, from Gibraltar to Lebanon with the aim of providing reliable estimates of regional differences in floating plastic loads and plastic characteristics. The abundance, size, surface, circularity and mass of 75,030 pieces were analyzed and classified in a standardized multi-parameter database. Their average abundance was 2.60 × 105 items km-2 (2.25 × 103 to 8.50 × 106 km-2) resulting in an estimate of about 650 billion plastic particles floating on the surface of the Mediterranean. This corresponds to an average of 660 metric tons of plastic, at the lower end of literature estimates. High concentrations of plastic were observed in the northwestern coastal regions, north of the Tyrrhenian Sea, but also off the western and central Mediterranean basins. The Levantine basin south of Cyprus had the lowest concentrations. A Lagrangian Plastic Pollution Index (LPPI) predicting the concentration of plastic debris was validated using the spatial resolution of the data. The advanced state of plastic degradation detected in the analyses led to the conclusion that stranding/fragmentation/resuspension is the key process in the dynamics of floating plastic in Mediterranean surface waters. This is supported by the significant correlation between pollution sources and areas of high plastic concentration obtained by the LPPI.


Assuntos
Plásticos , Resíduos , Monitoramento Ambiental , Poluição Ambiental/análise , Mar Mediterrâneo , Resíduos/análise
13.
Nat Commun ; 13(1): 2981, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624104

RESUMO

Plastic debris is a ubiquitous pollutant on the sea surface. To date, substantial research efforts focused on the detection of plastic accumulation zones. Here, a different paradigm is proposed: looking for crossroad regions through which large amounts of plastic debris flow. This approach is applied to the Mediterranean Sea, massively polluted but lacking in zones of high plastic concentration. The most extensive dataset of plastic measurements in this region to date is combined with an advanced numerical plastic-tracking model. Around 20% of Mediterranean plastic debris released every year passed through about 1% of the basin surface. The most important crossroads intercepted plastic debris from multiple sources, which had often traveled long distances. The detection of these spots could foster understanding of plastic transport and help mitigation strategies. Moreover, the general applicability and the soundness of the crossroad approach can promote its application to the study of other pollutants.


Assuntos
Poluentes Ambientais , Plásticos , Monitoramento Ambiental , Mar Mediterrâneo , Resíduos/análise
14.
Mar Pollut Bull ; 174: 113284, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34995887

RESUMO

The Mediterranean Sea is one of the most studied regions in the world in terms of microplastic (MP) contamination. However, only a few studies have analysed the chemical composition of MPs at the Mediterranean Sea surface. In this context, this study aims to describe the chemical composition as a function of particle size, mass and number concentrations of MPs collected in the surface waters of the Mediterranean Sea. The chemical composition showed a certain homogeneity at the Mediterranean Sea scale. The main polymers identified by Fourier Transform Infra-Red (FTIR) spectroscopy were poly(ethylene) (67.3 ± 2.4%), poly(propylene) (20.8 ± 2.1%) and poly(styrene) (3.0 ± 0.9%). Nevertheless, discrepancies, confirmed by the literature, were observed at a mesoscale level. Thus, in the North Tyrrhenian Sea, the proportion of poly(ethylene) was significantly lower than the average value of the Mediterranean Sea (57.9 ± 10.5%). Anthropic sources, rivers, or polymer ageing are assumed to be responsible for the variations observed.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Mar Mediterrâneo , Plásticos , Poluentes Químicos da Água/análise
15.
mSphere ; 6(3): e0085120, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34106771

RESUMO

While it is now appreciated that the millions of tons of plastic pollution travelling through marine systems carry complex communities of microorganisms, it is still unknown to what extent these biofilm communities are specific to the plastic or selected by the surrounding ecosystem. To address this, we characterized and compared the microbial communities of microplastic particles, nonplastic (natural and wax) particles, and the surrounding waters from three marine ecosystems (the Baltic, Sargasso and Mediterranean seas) using high-throughput 16S rRNA gene sequencing. We found that biofilm communities on microplastic and nonplastic particles were highly similar to one another across this broad geographical range. The similar temperature and salinity profiles of the Sargasso and Mediterranean seas, compared to the Baltic Sea, were reflected in the biofilm communities. We identified plastic-specific operational taxonomic units (OTUs) that were not detected on nonplastic particles or in the surrounding waters. Twenty-six of the plastic-specific OTUs were geographically ubiquitous across all sampled locations. These geographically ubiquitous plastic-specific OTUs were mostly low-abundance members of their biofilm communities and often represented uncultured members of marine ecosystems. These results demonstrate the potential for plastics to be a reservoir of rare and understudied microbes, thus warranting further investigations into the dynamics and role of these microbes in marine ecosystems. IMPORTANCE This study represents one of the largest comparisons of biofilms from environmentally sampled plastic and nonplastic particles from aquatic environments. By including particles sampled through three separate campaigns in the Baltic, Sargasso, and Mediterranean seas, we were able to make cross-geographical comparisons and discovered common taxonomical signatures that define the plastic biofilm. For the first time, we identified plastic-specific bacteria that reoccur across marine regions. Our data reveal that plastics have selective properties that repeatedly enrich for similar bacteria regardless of location, potentially shifting aquatic microbial communities in areas with high levels of plastic pollution. Furthermore, we show that bacterial communities on plastic do not appear to be strongly influenced by polymer type, suggesting that other properties, such as the absorption and/or leaching of chemicals from the surface, are likely to be more important in the selection and enrichment of specific microorganisms.


Assuntos
Bactérias/genética , Bactérias/isolamento & purificação , Microbiota , Plásticos , Água do Mar/microbiologia , Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Geografia , RNA Ribossômico 16S , Poluentes Químicos da Água/análise
16.
Chemosphere ; 262: 127648, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32771705

RESUMO

Spectrometric analysis is one of the most widely used approaches to characterize the chemical nature of microplastics. Despite recent developments, this key step remains time consuming. The aim of this paper is to propose a new method for the pre-detection of microplastics based on mid-infrared imaging. Plastic particles were mixed with sand particles and placed on a glass filter. Infrared observation with a thermal camera shows a stronger thermal contrast measured between the filter and the plastics than between the filter and the sand, which reveals the plastic particles in a few tens of seconds. An image processing tool is then used to amplify this contrast. Furthermore, this pre-detection method makes it possible to propose hypotheses on the most probable chemical nature of the particles identified. Consequently, pre-detection using active thermography constitutes a promising way of significantly accelerating microplastic study.


Assuntos
Monitoramento Ambiental/métodos , Microplásticos , Plásticos/química , Termografia , Poluentes Químicos da Água/análise
17.
Ann Glob Health ; 86(1): 151, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33354517

RESUMO

Background: Pollution - unwanted waste released to air, water, and land by human activity - is the largest environmental cause of disease in the world today. It is responsible for an estimated nine million premature deaths per year, enormous economic losses, erosion of human capital, and degradation of ecosystems. Ocean pollution is an important, but insufficiently recognized and inadequately controlled component of global pollution. It poses serious threats to human health and well-being. The nature and magnitude of these impacts are only beginning to be understood. Goals: (1) Broadly examine the known and potential impacts of ocean pollution on human health. (2) Inform policy makers, government leaders, international organizations, civil society, and the global public of these threats. (3) Propose priorities for interventions to control and prevent pollution of the seas and safeguard human health. Methods: Topic-focused reviews that examine the effects of ocean pollution on human health, identify gaps in knowledge, project future trends, and offer evidence-based guidance for effective intervention. Environmental Findings: Pollution of the oceans is widespread, worsening, and in most countries poorly controlled. It is a complex mixture of toxic metals, plastics, manufactured chemicals, petroleum, urban and industrial wastes, pesticides, fertilizers, pharmaceutical chemicals, agricultural runoff, and sewage. More than 80% arises from land-based sources. It reaches the oceans through rivers, runoff, atmospheric deposition and direct discharges. It is often heaviest near the coasts and most highly concentrated along the coasts of low- and middle-income countries. Plastic is a rapidly increasing and highly visible component of ocean pollution, and an estimated 10 million metric tons of plastic waste enter the seas each year. Mercury is the metal pollutant of greatest concern in the oceans; it is released from two main sources - coal combustion and small-scale gold mining. Global spread of industrialized agriculture with increasing use of chemical fertilizer leads to extension of Harmful Algal Blooms (HABs) to previously unaffected regions. Chemical pollutants are ubiquitous and contaminate seas and marine organisms from the high Arctic to the abyssal depths. Ecosystem Findings: Ocean pollution has multiple negative impacts on marine ecosystems, and these impacts are exacerbated by global climate change. Petroleum-based pollutants reduce photosynthesis in marine microorganisms that generate oxygen. Increasing absorption of carbon dioxide into the seas causes ocean acidification, which destroys coral reefs, impairs shellfish development, dissolves calcium-containing microorganisms at the base of the marine food web, and increases the toxicity of some pollutants. Plastic pollution threatens marine mammals, fish, and seabirds and accumulates in large mid-ocean gyres. It breaks down into microplastic and nanoplastic particles containing multiple manufactured chemicals that can enter the tissues of marine organisms, including species consumed by humans. Industrial releases, runoff, and sewage increase frequency and severity of HABs, bacterial pollution, and anti-microbial resistance. Pollution and sea surface warming are triggering poleward migration of dangerous pathogens such as the Vibrio species. Industrial discharges, pharmaceutical wastes, pesticides, and sewage contribute to global declines in fish stocks. Human Health Findings: Methylmercury and PCBs are the ocean pollutants whose human health effects are best understood. Exposures of infants in utero to these pollutants through maternal consumption of contaminated seafood can damage developing brains, reduce IQ and increase children's risks for autism, ADHD and learning disorders. Adult exposures to methylmercury increase risks for cardiovascular disease and dementia. Manufactured chemicals - phthalates, bisphenol A, flame retardants, and perfluorinated chemicals, many of them released into the seas from plastic waste - can disrupt endocrine signaling, reduce male fertility, damage the nervous system, and increase risk of cancer. HABs produce potent toxins that accumulate in fish and shellfish. When ingested, these toxins can cause severe neurological impairment and rapid death. HAB toxins can also become airborne and cause respiratory disease. Pathogenic marine bacteria cause gastrointestinal diseases and deep wound infections. With climate change and increasing pollution, risk is high that Vibrio infections, including cholera, will increase in frequency and extend to new areas. All of the health impacts of ocean pollution fall disproportionately on vulnerable populations in the Global South - environmental injustice on a planetary scale. Conclusions: Ocean pollution is a global problem. It arises from multiple sources and crosses national boundaries. It is the consequence of reckless, shortsighted, and unsustainable exploitation of the earth's resources. It endangers marine ecosystems. It impedes the production of atmospheric oxygen. Its threats to human health are great and growing, but still incompletely understood. Its economic costs are only beginning to be counted.Ocean pollution can be prevented. Like all forms of pollution, ocean pollution can be controlled by deploying data-driven strategies based on law, policy, technology, and enforcement that target priority pollution sources. Many countries have used these tools to control air and water pollution and are now applying them to ocean pollution. Successes achieved to date demonstrate that broader control is feasible. Heavily polluted harbors have been cleaned, estuaries rejuvenated, and coral reefs restored.Prevention of ocean pollution creates many benefits. It boosts economies, increases tourism, helps restore fisheries, and improves human health and well-being. It advances the Sustainable Development Goals (SDG). These benefits will last for centuries. Recommendations: World leaders who recognize the gravity of ocean pollution, acknowledge its growing dangers, engage civil society and the global public, and take bold, evidence-based action to stop pollution at source will be critical to preventing ocean pollution and safeguarding human health.Prevention of pollution from land-based sources is key. Eliminating coal combustion and banning all uses of mercury will reduce mercury pollution. Bans on single-use plastic and better management of plastic waste reduce plastic pollution. Bans on persistent organic pollutants (POPs) have reduced pollution by PCBs and DDT. Control of industrial discharges, treatment of sewage, and reduced applications of fertilizers have mitigated coastal pollution and are reducing frequency of HABs. National, regional and international marine pollution control programs that are adequately funded and backed by strong enforcement have been shown to be effective. Robust monitoring is essential to track progress.Further interventions that hold great promise include wide-scale transition to renewable fuels; transition to a circular economy that creates little waste and focuses on equity rather than on endless growth; embracing the principles of green chemistry; and building scientific capacity in all countries.Designation of Marine Protected Areas (MPAs) will safeguard critical ecosystems, protect vulnerable fish stocks, and enhance human health and well-being. Creation of MPAs is an important manifestation of national and international commitment to protecting the health of the seas.


Assuntos
Ecossistema , Plásticos , Animais , Humanos , Concentração de Íons de Hidrogênio , Masculino , Oceanos e Mares , Água do Mar , Poluição da Água/prevenção & controle
18.
Chemosphere ; 234: 242-251, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31226506

RESUMO

The development of methods to automatically determine the chemical nature of microplastics by FTIR-ATR spectra is an important challenge. A machine learning method, named k-nearest neighbors classification, has been applied on spectra of microplastics collected during Tara Expedition in the Mediterranean Sea (2014). To realize these tests, a learning database composed of 969 microplastic spectra has been created. Results show that the machine learning process is very efficient to identify spectra of classical polymers such as poly(ethylene), but also that the learning database must be enhanced with less common microplastic spectra. Finally, this method has been applied on more than 4000 spectra of unidentified microplastics. The verification protocol showed less than 10% difference in the results between the proposed automated method and a human expertise, 75% of which can be very easily corrected.


Assuntos
Algoritmos , Aprendizado de Máquina , Plásticos/análise , Plásticos/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Monitoramento Ambiental/métodos , Humanos , Mar Mediterrâneo
19.
PLoS One ; 14(2): e0212088, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30742663

RESUMO

The study of microplastic pollution involves multidisciplinary analyses on a large number of microplastics. Therefore, providing an overview of plastic pollution is time consuming and, despite high throughput analyses, remains a major challenge. The objective of this study is to propose a protocol to determine how many microplastics must be analyzed to give a representative view of the particle size distribution and chemical nature, and calculate the associated margin error. Based on microplastic data from Tara Mediterranean campaign, this approach is explained through different examples. In this particular case, the results show that only 3% of the collected microplastics need to be analyzed to give a precise view on the scale of the North West Mediterranean Basin (error <5%), and 17.7% to give an overview manta per manta (error <10%). This approach could be an important practical contribution to microplastic studies.


Assuntos
Poluição Ambiental/análise , Plásticos/análise , Água do Mar/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Mar Mediterrâneo , Tamanho da Partícula , Reprodutibilidade dos Testes , Espectrofotometria , Espectroscopia de Infravermelho com Transformada de Fourier
20.
PLoS One ; 12(12): e0190121, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29267395

RESUMO

Ultraplankton [heterotrophic prokaryotes and ultraphytoplankton (<10 µm)] were monitored weekly over two years (2009 & 2010) in a coastal area of the NW Mediterranean Sea. Six clusters were differentiated by flow cytometry on the basis of their optical properties, two heterotrophic prokaryote (HP) subgroups labelled LNA and HNA (low and high nucleic acid content respectively), Prochlorococcus, Synechococcus, autotrophic picoeukaryotes and nanoeukaryotes. HP represented an important component of the microbial assemblage over the survey with relatively small abundance variation through seasons. The carbon biomass ratio HP/ultraphytoplankton averaged 0.45, however this ratio exceeded 1 during spring. Ultraphytoplankton biomass made about 50% of the total autotrophic carbon estimates but this contribution increased up to 97% and 67% during the 2009 and 2010 spring periods respectively. Within ultraphytoplankton, nanoeukaryote represent the most important ultraphytoplankton group in terms of autotrophic carbon biomass (up to 70%). Picoeukaryote maximum abundance occurred in winter. Synechococcus was the most abundant population (maximum 1.2 x 10 5 cells cm-3) particularly in spring where it represented up to 54% of ultraphytoplankton carbon biomass. The warmer winter-spring temperatures and the lengthening of the stratification period created a favorable situation for the earlier appearance of Synechococcus and its persistence throughout summer, paralleling Prochlorococcus development. Prochlorococcus was dominant over summer and autumn with concentrations up to 1.0 × 10 5 cells cm-3. While the abundance of Synechococcus throughout survey was of the same order as that reported in western Mediterranean Sea, Prochlorococcus was more abundant and similar to the more typical oligotrophic and warm waters. The abundance variation of the ultraplankton components through the survey was relatable to variations in the hydrological and nutrient conditions.


Assuntos
Ecossistema , Plâncton/classificação , Biomassa , Clorofila/metabolismo , Clorofila A , Citometria de Fluxo , Mar Mediterrâneo , Plâncton/crescimento & desenvolvimento , Plâncton/metabolismo , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...