Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 167: 93-105, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31560933

RESUMO

In this study, we tested the possibility of creating complexes of two proteins by fusing them with heterodimerizing helices. We used the fluorescent proteins GFP and mCHERRY expressed with a His-tag as our model system. We added heterodimer-forming sequences at the C- or N- termini of the proteins, opposite to the His-tag position. Heterodimerization was tested for both helices at the C-terminus or at the N- terminus and C-terminus. We observed complex formation with a nanomolar dissociation constant in both cases that was higher by one order of magnitude than the Kds measured for helices alone. The binding of two C-terminal helices was accompanied by an increased enthalpy change. The binding between helices could be stabilized by introducing an additional turn of the helix with cysteine, which was capable of forming disulphide bridges. Covalently linked proteins were obtained using this strategy and observed using fluorescence cross-correlation spectroscopy. Finally, we demonstrated the formation of complexes of protein dimers and quantum dots.


Assuntos
Cisteína/química , Proteínas de Fluorescência Verde/química , Proteínas Luminescentes/química , Multimerização Proteica , Pontos Quânticos/química , Sequência de Aminoácidos , Dimerização , Ligação de Hidrogênio , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Proteína Vermelha Fluorescente
2.
ACS Omega ; 4(8): 13086-13099, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31460436

RESUMO

While quantum dots (QDs) are useful as fluorescent labels, their application in biosciences is limited due to the stability and hydrophobicity of their surface. In this study, we tested two types of proteins for use as a cover for spherical QDs, composed of cadmium selenide. Pumilio homology domain (Puf), which is mostly α-helical, and leucine-rich repeat (LRR) domain, which is rich in ß-sheets, were selected to determine if there is a preference for one of these secondary structure types for nanoparticle covers. The protein sequences were optimized to improve their interaction with the surface of QDs. The solubilization of the apoproteins and their assembly with nanoparticles required the application of a detergent, which was removed in subsequent steps. Finally, only the Puf-based cover was successful enough as a QD hydrophilic cover. We showed that a single polypeptide dimer of Puf, PufPuf, can form a cover. We characterized the size and fluorescent properties of the obtained QD:protein assemblies. We showed that the secondary structure of the Puf proteins was not destroyed upon contact with the QDs. We demonstrated that these assemblies do not promote the formation of reactive oxygen species during illumination of the nanoparticles. The data represent advances in the effort to obtain a stable biocompatible cover for QDs.

3.
J Alloys Compd ; 451(1-2): 251-253, 2008 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-19777143

RESUMO

Solvated tris-complexes of (R)- and (S)-1,1'-binaphthyl-2,2'-dyil phosphate with lanthanum(III) and europium(III) centers were prepared and characterized by spectroscopic methods and elemental analysis. Circularly polarized luminescence (CPL) spectra for the optically active isomers of the europium complexes are also reported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...