Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Appl Physiol ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568259

RESUMO

PURPOSE: Caffeine is a commonly used ergogenic aid for endurance events; however, its efficacy and safety have been questioned in hot environmental conditions. The aim of this study was to investigate the effects of acute caffeine supplementation on cycling time to exhaustion and thermoregulation in the heat. METHODS: In a double-blind, randomised, cross-over trial, 12 healthy caffeine-habituated and unacclimatised males cycled to exhaustion in the heat (35 °C, 40% RH) at an intensity associated with the thermoneutral gas exchange threshold, on two separate occasions, 60 min after ingesting caffeine (5 mg/kg) or placebo (5 mg/kg). RESULTS: There was no effect of caffeine supplementation on cycling time to exhaustion (TTE) (caffeine; 28.5 ± 8.3 min vs. placebo; 29.9 ± 8.8 min, P = 0.251). Caffeine increased pulmonary oxygen uptake by 7.4% (P = 0.003), heat production by 7.9% (P = 0.004), whole-body sweat rate (WBSR) by 21% (P = 0.008), evaporative heat transfer by 16.5% (P = 0.006) and decreased estimated skin blood flow by 14.1% (P < 0.001) compared to placebo. Core temperature was higher by 0.6% (P = 0.013) but thermal comfort decreased by - 18.3% (P = 0.040), in the caffeine condition, with no changes in rate of perceived exertion (P > 0.05). CONCLUSION: The greater heat production and storage, as indicated by a sustained increase in core temperature, corroborate previous research showing a thermogenic effect of caffeine ingestion. When exercising at the pre-determined gas exchange threshold in the heat, 5 mg/kg of caffeine did not provide a performance benefit and increased the thermal strain of participants.

2.
Eur J Sport Sci ; 23(10): 2038-2048, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37161852

RESUMO

We determined the effects of topically applied (i) isolated menthol cream, (ii) menthol and capsaicin co-application or (iii) placebo cream on exercise tolerance, thermal perception, pain, attentional focus and thermoregulation during exercise in the heat. Ten participants cycled at 70% maximal power output until exhaustion in 35°C and 20% relative humidity after application of (i) 5% isolated menthol, (ii) 5% menthol and 0.025% capsaicin co-application or (iii) placebo cream. Thermo-physiological responses were measured during exercise, with attentional focus and pain determined post-exercise on a 0-to-10 scale. Across the three conditions, time to exhaustion was 13.4 ± 4.8 min, mean ± SD infrared tympanic and skin temperature was 37.2 ± 0.6°C and 35.1 ± 1.2°C, respectively, and heart rate was 152 ± 47 bpm, with no changes between conditions (p > 0.05). Perceived exertion was lower in the isolated menthol vs. all other conditions (p < 0.05, ηp2 = 0.44). Thermal sensation was higher in menthol-capsaicin co-application vs. isolated menthol (p < 0.05, d = 1.1), while sweat rate was higher for capsaicin and menthol co-application compared to menthol (p < 0.05, d = 0.85). The median and interquartile range scores for pain were lower (p < 0.05) in the menthol condition (8, 7-8) compared to both menthol and capsaicin (10, 9-10) and placebo (9, 9-10), which was coupled with a greater distraction (p < 0.05) in the menthol condition (9, 7-10) compared to placebo (6, 5-7). Despite no performance effects for any topical cream application condition, these data reiterate the advantageous perceptual and analgesic role of menthol application and demonstrate no advantage of co-application with capsaicin.HighlightsTopical application of isolated menthol cream to cold-sensitive areas of the body during exhaustive exercise in the heat, elicited reduced perception of pain and enhanced sensation of cooling.While this reduction in generally unpleasant feelings (i.e. pain and heat) were coupled with lower RPE scores in the menthol condition and could be considered beneficial, there was no apparent ergogenic effect in an exercise tolerance test.Co-application of capsaicin and menthol appeared to inhibit the positive sensory effects elicited by menthol.Isolated menthol can induce changes in cognitive processes related to pain and exertion, while also reducing thermal sensation; however, the decision to use menthol creams must be balanced with the limited performance or thermoregulatory effects reported herein during exercise in hot environments.


Assuntos
Capsaicina , Mentol , Humanos , Regulação da Temperatura Corporal/fisiologia , Capsaicina/farmacologia , Tolerância ao Exercício , Temperatura Alta , Mentol/farmacologia , Dor , Percepção da Dor , Sensação Térmica , Estudos Cross-Over , Masculino , Feminino , Adulto
3.
Eur J Sport Sci ; 23(7): 1305-1314, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36533403

RESUMO

The factors explaining variance in thermoneutral maximal oxygen uptake (V˙O2max) adaptation to heat acclimation (HA) were evaluated, with consideration of HA programme parameters, biophysical variables and thermo-physiological responses. Seventy-one participants consented to perform iso-intensity training (range: 45%-55% V˙O2max) in the heat (range: 30°C-38°C; 20%-60% relative humidity) on consecutive days (range: 5-days-14-days) for between 50-min and-90 min. The participants were evaluated for their thermoneutral V˙O2max change pre-to-post HA. Participants' whole-body sweat rate, heart rate, core temperature, perceived exertion and thermal sensation and plasma volume were measured, and changes in these responses across the programme determined. Partial least squares regression was used to explain variance in the change in V˙O2max across the programme using 24 variables. Sixty-three percent of the participants increased V˙O2max more than the test error, with a mean ± SD improvement of 2.6 ± 7.9%. A two-component model minimised the root mean squared error and explained the greatest variance (R2; 65%) in V˙O2max change. Eight variables positively contributed (P < 0.05) to the model: exercise intensity (%V˙O2max), ambient temperature, HA training days, total exposure time, baseline body mass, thermal sensation, whole-body mass losses and the number of days between the final day of HA and the post-testing day. Within the ranges evaluated, iso-intensity HA improved V˙O2max 63% of the time, with intensity - and volume-based parameters, alongside sufficient delays in post-testing being important considerations for V˙O2max maximisation. Monitoring of thermal sensation and body mass losses during the programme offers an accessible way to gauge the degree of potential adaptation.


Assuntos
Aclimatação , Temperatura Alta , Humanos , Aclimatação/fisiologia , Consumo de Oxigênio/fisiologia , Adaptação Fisiológica , Sudorese , Frequência Cardíaca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...