Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 169095, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38056671

RESUMO

Climate change may affect the ability of hunters to harvest wildlife and, hence, threaten food security of local people. However, few studies have investigated the relative influence of environmental conditions on wildlife harvest rates. We harnessed a 24-year dataset of harvest dates for a boreal ungulate in a region where climate change is having pronounced impacts on snow depth, precipitation, and temperatures to investigate the effect of weather on harvest rates. We used generalized linear models and a model selection framework to examine the influence of weather covariates (snow depth, mean daily temperature, precipitation) and socio-economic factors (gasoline and red meat prices, employment rates, and moose [Alces americanus] harvest) on harvest rates of bison (Bison bison) in Yukon, Canada, at two temporal scales: annual and daily. At an annual scale, snow depth was the only covariate that was important in explaining bison harvest. No socioeconomic variables improved our model beyond the null. At the daily scale, snow depth and mean daily temperature influenced bison harvest rates, with a 1 SD increase resulting in a 14 % and 9 % increase in daily harvest rates, respectively. Increased snow depth facilitates ease of travel in remote, roadless areas by snowmobile to locate bison and truncates movements of bison, resulting in increased harvest rates. Decreased snow depth due to climate change will impact hunter access to boreal ungulates and food security for northern people. More broadly, our data suggests that in some socioecological systems, environmental covariates have a greater influence on wildlife harvest rates than socioeconomic factors and need to be considered in future studies to better understand and predict harvest rates.


Assuntos
Bison , Cervos , Animais , Humanos , Animais Selvagens , Mudança Climática , Fatores Econômicos , Segurança Alimentar , Neve
2.
Proc Biol Sci ; 290(1999): 20230661, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37192667

RESUMO

The assumption that activity and foraging are risky for prey underlies many predator-prey theories and has led to the use of predator-prey activity overlap as a proxy of predation risk. However, the simultaneous measures of prey and predator activity along with timing of predation required to test this assumption have not been available. Here, we used accelerometry data on snowshoe hares (Lepus americanus) and Canada lynx (Lynx canadensis) to determine activity patterns of prey and predators and match these to precise timing of predation. Surprisingly we found that lynx kills of hares were as likely to occur during the day when hares were inactive as at night when hares were active. We also found that activity rates of hares were not related to the chance of predation at daily and weekly scales, whereas lynx activity rates positively affected the diel pattern of lynx predation on hares and their weekly kill rates of hares. Our findings suggest that predator-prey diel activity overlap may not always be a good proxy of predation risk, and highlight a need for examining the link between predation and spatio-temporal behaviour of predator and prey to improve our understanding of how predator-prey behavioural interactions drive predation risk.


Assuntos
Lebres , Lynx , Animais , Ecossistema , Comportamento Predatório
3.
Proc Biol Sci ; 290(1996): 20221421, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37015272

RESUMO

Some mammal species inhabiting high-latitude biomes have evolved a seasonal moulting pattern that improves camouflage via white coats in winter and brown coats in summer. In many high-latitude and high-altitude areas, the duration and depth of snow cover has been substantially reduced in the last five decades. This reduction in depth and duration of snow cover may create a mismatch between coat colour and colour of the background environment, and potentially reduce the survival rate of species that depend on crypsis. We used long-term (1977-2020) field data and capture-mark-recapture models to test the hypothesis that whiteness of the coat influences winter apparent survival in a cyclic population of snowshoe hares (Lepus americanus) at Kluane, Yukon, Canada. Whiteness of the snowshoe hare coat in autumn declined during this study, and snowshoe hares with a greater proportion of whiteness in their coats in autumn survived better during winter. However, whiteness of the coat in spring did not affect subsequent summer survival. These results are consistent with the hypothesis that the timing of coat colour change in autumn can reduce overwinter survival. Because declines in cyclic snowshoe hare populations are strongly affected by low winter survival, the timing of coat colour change may adversely affect snowshoe hare population dynamics as climate change continues.


Assuntos
Lebres , Animais , Cor , Ecossistema , Canadá , Dinâmica Populacional , Estações do Ano
4.
Ecology ; 104(2): e3882, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36208219

RESUMO

Climate warming is causing asynchronies between animal phenology and environments. Mismatched traits, such as coat color change mismatched with snow, can decrease survival. However, coat change does not serve a singular adaptive benefit of camouflage, and alternate coat change functions may confer advantages that supersede mismatch costs. We found that mismatch reduced, rather than increased, autumn mortality risk of snowshoe hares in Yukon by 86.5% when mismatch occurred. We suggest that the increased coat insulation and lower metabolic rates of winter-acclimatized hares confer energetic advantages to white mismatched hares that reduce their mortality risk. We found that white mismatched hares forage 17-77 min less per day than matched brown hares between 0°C and -10°C, thus lowering their predation risk and increasing survival. We found no effect of mismatch on spring mortality risk, during which mismatch occurred at warmer temperatures, suggesting a potential temperature limit at which the costs of conspicuousness outweigh energetic benefits.


Assuntos
Mimetismo Biológico , Lebres , Animais , Herbivoria , Fenótipo , Estações do Ano , Neve , Sobrevida , Regulação da Temperatura Corporal
5.
Ecol Lett ; 25(4): 981-991, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35148018

RESUMO

Snowshoe hare cycles are one of the most prominent phenomena in ecology. Experimental studies point to predation as the dominant driving factor, but previous experiments combining food supplementation and predator removal produced unexplained multiplicative effects on density. We examined the potential interactive effects of food limitation and predation in causing hare cycles using an individual-based food-supplementation experiment over-winter across three cycle phases that naturally varied in predation risk. Supplementation doubled over-winter survival with the largest effects occurring in the late increase phase. Although the proximate cause of mortality was predation, supplemented hares significantly decreased foraging time and selected for conifer habitat, potentially reducing their predation risk. Supplemented hares also lost less body mass which resulted in the production of larger leverets. Our results establish a mechanistic link between how foraging time, mass loss and predation risk affect survival and reproduction, potentially driving demographic changes associated with hare cycles.


Assuntos
Lebres , Animais , Ecossistema , Dinâmica Populacional , Comportamento Predatório , Estações do Ano
6.
Ecology ; 102(9): e03456, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34165786

RESUMO

Food availability and temporal variation in predation risk are both important determinants of the magnitude of antipredator responses, but their effects have rarely been examined simultaneously, particularly in wild prey. Here, we determine how food availability and long-term predation risk affect antipredator responses to acute predation risk by monitoring the foraging response of free-ranging snowshoe hares (Lepus americanus) to an encounter with a Canada lynx (Lynx canadensis) in Yukon, Canada, over four winters (2015-2016 to 2018-2019). We examined how this response was influenced by natural variation in long-term predation risk (2-month mortality rate of hares) while providing some individuals with supplemental food. On average, snowshoe hares reduced foraging time up to 10 h after coming into close proximity (≤75 m) with lynx, and reduced foraging time an average of 15.28 ± 7.08 min per lynx encounter. Hares tended to respond more strongly when the distance to lynx was shorter. More importantly, the magnitude of hares' antipredator response to a lynx encounter was affected by the interaction between food-supplementation and long-term predation risk. Food-supplemented hares reduced foraging time more than control hares after a lynx encounter under low long-term risk, but decreased the magnitude of the response as long-term risk increased. In contrast, control hares increased the magnitude of their response as long-term risk increased. Our findings show that food availability and long-term predation risk interactively drive the magnitude of reactive antipredator response to acute predation risk. Determining the factors driving the magnitude of antipredator responses would contribute to a better understanding of the indirect effects of predators on prey populations.


Assuntos
Cadeia Alimentar , Comportamento Predatório , Animais , Yukon
7.
Oecologia ; 195(4): 949-957, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33743069

RESUMO

Determining the factors driving cyclic dynamics in species has been a primary focus of ecology. For snowshoe hares (Lepus americanus), explanations of their 10-year population cycles most commonly feature direct predation during the peak and decline, in combination with their curtailment in reproduction. Hares are thought to stop producing third and fourth litters during the cyclic decline and do not recover reproductive output for several years. The demographic effects of these reproductive changes depend on the consistency of this pattern across cycles, and the relative contribution to population change of late-litter versus early litter juveniles. We used monitoring data on snowshoe hares in Yukon, Canada, to examine the contribution of late-litter juveniles to the demography of their cycles, by assigning litter group for individuals caught in autumn based on body size and capture date. We found that fourth-litter juveniles occur consistently during the increase phase of each cycle, but are rare and have low over-winter survival (0.05) suggesting that population increase is unlikely to be caused by their occurrence. The proportion of third-litter juveniles captured in the autumn remains relatively constant across cycle phases, while over-winter survival rates varies particularly for earlier-litter juveniles (0.14-0.39). Juvenile survival from all litters is higher during the population increase and peak, relative to the low and decline. Overall, these results suggest that the transition from low phase to population growth may stem in large part from changes in juvenile survival as opposed to increased reproductive output through the presence of a 4th litter.


Assuntos
Lebres , Animais , Canadá , Humanos , Dinâmica Populacional , Comportamento Predatório , Yukon
8.
Ecol Evol ; 10(21): 12147-12156, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33209277

RESUMO

Extreme weather events (EWEs) are expected to increase in stochasticity, frequency, and intensity due to climate change. Documented effects of EWEs, such as droughts, hurricanes, and temperature extremes, range from shifting community stable states to species extirpations. To date, little attention has been paid to how populations resist and/or recover from EWEs through compensatory (behavioral, demographic, or physiological) mechanisms; limiting the capacity to predict species responses to future changes in EWEs. Here, we systematically reviewed the global variation in species' demographic responses, resistance to, and recovery from EWEs across weather types, species, and biogeographic regions. Through a literature review and meta-analysis, we tested the prediction that population abundance and probability of persistence will decrease in populations after an EWE and how compensation affects that probability. Across 524 species population responses to EWEs reviewed (27 articles), we noted large variation in responses, such that, on average, the effect of EWEs on population demographics was not negative as predicted. The majority of species populations (80.4%) demonstrated compensatory mechanisms during events to reduce their deleterious effects. However, for populations that were negatively impacted, the demographic consequences were severe. Nearly 20% of the populations monitored experienced declines of over 50% after an EWE, and 6.8% of populations were extirpated. Population declines were reflected in a reduction in survival. Further, resilience was not common, as 80.0% of populations that declined did not recover to before EWE levels while monitored. However, average monitoring time was only two years with over a quarter of studies tracking recovery for less than the study species generation time. We conclude that EWEs have positive and negative impacts on species demography, and this varies by taxa. Species population recovery over short-time intervals is rare, but long-term studies are required to accurately assess species resilience to current and future events.

9.
J Anim Ecol ; 89(9): 2156-2167, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32686089

RESUMO

Scavenging by vertebrates can have important impacts on food web stability and persistence, and can alter the distribution of nutrients throughout the landscape. However, scavenging communities have been understudied in most regions around the globe, and we lack understanding of the biotic drivers of vertebrate scavenging dynamics. In this paper, we examined how changes in prey density and carrion biomass caused by population cycles of a primary prey species, the snowshoe hare Lepus americanus, influence scavenging communities in the northern boreal forest. We further examined the impact of habitat and temperature on scavenging dynamics. We monitored the persistence time, time until first scavenger, and number of species scavenging experimentally-placed hare carcasses over four consecutive years in the southwestern Yukon. We simultaneously monitored hare density and carrion biomass to examine their influence relative to temperature, habitat, and seasonal effects. For the primary scavengers, we developed species-specific scavenging models to determine variation on the effects of these factors across species, and determine which species may be driving temporal patterns in the entire community. We found that the efficiency of the scavenging community was affected by hare density, with carcass persistence decreasing when snowshoe hare densities declined, mainly due to increased scavenging rates by Canada lynx Lynx canadensis. However, prey density did not influence the number of species scavenging a given carcass, suggesting prey abundance affects carrion recycling but not necessarily the number of connections in the food web. In addition, scavenging rates increased in warmer temperatures, and there were strong seasonal effects on the richness of the vertebrate scavenging community. Our results demonstrate that vertebrate scavenging communities are sensitive to changes in species' demography and environmental change, and that future assessments of food web dynamics should consider links established through scavenging.


Assuntos
Comportamento Predatório , Taiga , Animais , Canadá , Ecossistema , Temperatura , Yukon
10.
Gen Comp Endocrinol ; 294: 113471, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32234297

RESUMO

Hair cortisol concentration is increasingly used as a convenient, non-invasive, and integrative measure of physiology and health in natural populations of mammals. However, the use of this index is potentially confounded by individual variation in body region-specific differences in cortisol deposition rates. Here we examine correlations in cortisol concentrations in hair collected from the ear, shoulder, and thigh of wild snowshoe hares, Lepus americanus, as well as the influence of sex on cortisol measurements. We further evaluated this technique's ability to capture seasonal and cyclical patterns of snowshoe hare glucocorticoid secretion from 2013 to 2015 in the southwestern Yukon (Canada). We found positive correlations (R2 = 0.20-0.32) in all pairwise comparisons among body regions, and differences among individuals accounted for the greatest proportion of variance (47.3%) in measurements. From 2013 to 2015 the hares' primary predator - Canada lynx - approximately doubled in population abundance. We found a significant increase in hare hair cortisol concentrations across this time period. Cortisol indices were higher in summer than winter pelage, reflecting predicted physiological responses to seasonal variation in food availability and individual risk. Variation in hair cortisol concentrations was more similar to long-term (weeks-months) integrative indices of adrenal capacity than point samples of fecal glucocorticoid metabolite concentrations. Overall, we find that hair cortisol analysis is a simple and useful tool for estimations of population-level stress physiology in wild mammals, and sampling of core body regions with consistent moulting patterns produced the most robust results in this species.


Assuntos
Cabelo/química , Lebres/anatomia & histologia , Lebres/metabolismo , Hidrocortisona/metabolismo , Estações do Ano , Caracteres Sexuais , Estresse Fisiológico , Animais , Biomarcadores/metabolismo , Canadá , Feminino , Sistema Hipotálamo-Hipofisário/fisiologia , Lynx/fisiologia , Masculino , Dinâmica Populacional , Comportamento Predatório
11.
Ecology ; 99(8): 1716-1723, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29897623

RESUMO

In recent years, it has been argued that the effect of predator fear exacts a greater demographic toll on prey populations than the direct killing of prey. However, efforts to quantify the effects of fear have primarily relied on experiments that replace predators with predator cues. Interpretation of these experiments must consider two important caveats: (1) the magnitude of experimenter-induced predator cues may not be realistically comparable to those of the prey's natural sensory environment, and (2) given functional predators are removed from the treatments, the fear effect is measured in the absence of any consumptive effects, a situation which never occurs in nature. We contend that demographic consequences of fear in natural populations may have been overestimated because the intensity of predator cues applied by experimenters in the majority of studies has been unnaturally high, in some instances rarely occurring in nature without consumption. Furthermore, the removal of consumption from the treatments creates the potential situation that individual prey in poor condition (those most likely to contribute strongly to the observed fear effects via starvation or reduced reproductive output) may have been consumed by predators in nature prior to the expression of fear effects, thus confounding consumptive and fear effects. Here, we describe an alternative treatment design that does not utilize predator cues, and in so doing, better quantifies the demographic effect of fear on wild populations. This treatment substitutes the traditional cue experiment where consumptive effects are eliminated and fear is simulated with a design where fear is removed and consumptive effects are simulated through the experimental removal of prey. Comparison to a natural population would give a more robust estimate of the effect of fear in the presence of consumption on the demographic variable of interest. This approach represents a critical advance in quantifying the mechanistic pathways through which predation structures ecological communities. Discussing the merits of both treatments will motivate researchers to go beyond simply describing the existence of fear effects and focus on testing their true magnitude in wild populations and natural communities.


Assuntos
Cadeia Alimentar , Comportamento Predatório , Animais , Sinais (Psicologia) , Demografia , Medo
12.
Oecologia ; 186(1): 141-150, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29167983

RESUMO

For many organisms, climate change can directly drive population declines, but it is less clear how such variation may influence populations indirectly through modified biotic interactions. For instance, how will climate change alter complex, multi-species relationships that are modulated by climatic variation and that underlie ecosystem-level processes? Caribou (Rangifer tarandus), a keystone species in Newfoundland, Canada, provides a useful model for unravelling potential and complex long-term implications of climate change on biotic interactions and population change. We measured cause-specific caribou calf predation (1990-2013) in Newfoundland relative to seasonal weather patterns. We show that black bear (Ursus americanus) predation is facilitated by time-lagged higher summer growing degree days, whereas coyote (Canis latrans) predation increases with current precipitation and winter temperature. Based on future climate forecasts for the region, we illustrate that, through time, coyote predation on caribou calves could become increasingly important, whereas the influence of black bear would remain unchanged. From these predictions, demographic projections for caribou suggest long-term population limitation specifically through indirect effects of climate change on calf predation rates by coyotes. While our work assumes limited impact of climate change on other processes, it illustrates the range of impact that climate change can have on predator-prey interactions. We conclude that future efforts to predict potential effects of climate change on populations and ecosystems should include assessment of both direct and indirect effects, including climate-predator interactions.


Assuntos
Mudança Climática , Ecossistema , Animais , Canadá , Bovinos , Dinâmica Populacional , Comportamento Predatório
13.
PLoS One ; 12(5): e0176706, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28505173

RESUMO

Climate change threatens natural landscapes through shifting distribution and abundance of species and attendant change in the structure and function of ecosystems. However, it remains unclear how climate-mediated variation in species' environmental niche space may lead to large-scale fragmentation of species distributions, altered meta-population dynamics and gene flow, and disrupted ecosystem integrity. Such change may be especially relevant when species distributions are restricted either spatially or to a narrow environmental niche, or when environments are rapidly changing. Here, we use range-wide environmental niche models to posit that climate-mediated range fragmentation aggravates the direct effects of climate change on species in the boreal forest of North America. We show that climate change will directly alter environmental niche suitability for boreal-obligate species of trees, birds and mammals (n = 12), with most species ranges becoming smaller and shifting northward through time. Importantly, species distributions will become increasingly fragmented, as characterized by smaller mean size and greater isolation of environmentally-suitable landscape patches. This loss is especially pronounced along the Ontario-Québec border, where the boreal forest is narrowest and roughly 78% of suitable niche space could disappear by 2080. Despite the diversity of taxa surveyed, patterns of range fragmentation are remarkably consistent, with our models predicting that spruce grouse (Dendragapus canadensis), boreal chickadee (Poecile hudsonicus), moose (Alces americanus) and caribou (Rangifer tarandus) could have entirely disjunct east-west population segments in North America. These findings reveal potentially dire consequences of climate change on population continuity and species diversity in the boreal forest, highlighting the need to better understand: 1) extent and primary drivers of anticipated climate-mediated range loss and fragmentation; 2) diversity of species to be affected by such change; 3) potential for rapid adaptation in the most strongly-affected areas; and 4) potential for invasion by replacement species.


Assuntos
Biodiversidade , Clima , Ecossistema , Taiga , Mudança Climática , Conservação dos Recursos Naturais , Geografia , Modelos Teóricos , Ontário , Quebeque , Árvores
14.
Biol Rev Camb Philos Soc ; 91(3): 597-610, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25865035

RESUMO

Peer review is pivotal to science and academia, as it represents a widely accepted strategy for ensuring quality control in scientific research. Yet, the peer-review system is poorly adapted to recent changes in the discipline and current societal needs. We provide historical context for the cultural lag that governs peer review that has eventually led to the system's current structural weaknesses (voluntary review, unstandardized review criteria, decentralized process). We argue that some current attempts to upgrade or otherwise modify the peer-review system are merely sticking-plaster solutions to these fundamental flaws, and therefore are unlikely to resolve them in the long term. We claim that for peer review to be relevant, effective, and contemporary with today's publishing demands across scientific disciplines, its main components need to be redesigned. We propose directional changes that are likely to improve the quality, rigour, and timeliness of peer review, and thereby ensure that this critical process serves the community it was created for.


Assuntos
Revisão por Pares/normas , Revisão por Pares/tendências , Editoração/normas , Ciência/normas , Ciência/tendências
15.
Glob Chang Biol ; 20(4): 1126-35, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24353147

RESUMO

Understanding the effects of climate change on species' persistence is a major research interest; however, most studies have focused on responses at the northern or expanding range edge. There is a pressing need to explain how species can persist at their southern range when changing biotic interactions will influence species occurrence. For predators, variation in distribution of primary prey owing to climate change will lead to mismatched distribution and local extinction, unless their diet is altered to more extensively include alternate prey. We assessed whether addition of prey information in climate projections restricted projected habitat of a specialist predator, Canada lynx (Lynx canadensis), and if switching from their primary prey (snowshoe hare; Lepus americanus) to an alternate prey (red squirrel; Tamiasciurus hudsonicus) mitigates range restriction along the southern range edge. Our models projected distributions of each species to 2050 and 2080 to then refine predictions for southern lynx on the basis of varying combinations of prey availability. We found that models that incorporated information on prey substantially reduced the total predicted southern range of lynx in both 2050 and 2080. However, models that emphasized red squirrel as the primary species had 7-24% lower southern range loss than the corresponding snowshoe hare model. These results illustrate that (i) persistence at the southern range may require species to exploit higher portions of alternate food; (ii) selection may act on marginal populations to accommodate phenotypic changes that will allow increased use of alternate resources; and (iii) climate projections based solely on abiotic data can underestimate the severity of future range restriction. In the case of Canada lynx, our results indicate that the southern range likely will be characterized by locally varying levels of mismatch with prey such that the extent of range recession or local adaptation may appear as a geographical mosaic.


Assuntos
Ecossistema , Lynx/fisiologia , Comportamento Predatório/fisiologia , Animais , Canadá , Mudança Climática , Lebres , Modelos Teóricos , Sciuridae
16.
Proc Biol Sci ; 280(1773): 20132495, 2013 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-24174116

RESUMO

Determining the patterns, causes and consequences of character displacement is central to our understanding of competition in ecological communities. However, the majority of competition research has occurred over small spatial extents or focused on fine-scale differences in morphology or behaviour. The effects of competition on broad-scale distribution and niche characteristics of species remain poorly understood but critically important. Using range-wide species distribution models, we evaluated whether Canada lynx (Lynx canadensis) or bobcat (Lynx rufus) were displaced in regions of sympatry. Consistent with our prediction, we found that lynx niches were less similar to those of bobcat in areas of sympatry versus allopatry, with a stronger reliance on snow cover driving lynx niche divergence in the sympatric zone. By contrast, bobcat increased niche breadth in zones of sympatry, and bobcat niches were equally similar to those of lynx in zones of sympatry and allopatry. These findings suggest that competitively disadvantaged species avoid competition at large scales by restricting their niche to highly suitable conditions, while superior competitors expand the diversity of environments used. Our results indicate that competition can manifest within climatic niche space across species' ranges, highlighting the importance of biotic interactions occurring at large spatial scales on niche dynamics.


Assuntos
Comportamento Competitivo , Lynx/fisiologia , Modelos Teóricos , Animais , Canadá , Ecossistema , Densidade Demográfica , Dinâmica Populacional , Estados Unidos
17.
PLoS One ; 7(12): e51488, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23236508

RESUMO

The long-standing view in ecology is that disparity in overall resource selection is the basis for identifying niche breadth patterns, with species having narrow selection being classified "specialists" and those with broader selection being "generalists". The standard model of niche breadth characterizes generalists and specialists as having comparable levels of overall total resource exploitation, with specialists exploiting resources at a higher level of performance over a narrower range of conditions. This view has gone largely unchallenged. An alternate model predicts total resource use being lower for the specialized species with both peaking at a comparable level of performance over a particular resource gradient. To reconcile the niche breadth paradigm we contrasted both models by developing range-wide species distribution models for Canada lynx, Lynx canadensis, and bobcat, Lynx rufus. Using a suite of environmental factors to define each species' niche, we determined that Canada lynx demonstrated higher total performance over a restricted set of variables, specifically those related to snow and altitude, while bobcat had higher total performance across most variables. Unlike predictions generated by the standard model, bobcat level of exploitation was not compromised by the trade-off with peak performance, and Canada lynx were not restricted to exploiting a narrower range of conditions. Instead, the emergent pattern was that specialist species have a higher total resource utilization and peak performance value within a smaller number of resources or environmental axes than generalists. Our results also indicate that relative differences in niche breadth are strongly dependent on the variable under consideration, implying that the appropriate model describing niche breadth dynamics between specialists and generalists may be more complex than either the traditional heuristic or our modified version. Our results demonstrate a need to re-evaluate traditional, but largely untested, assumptions regarding resource utilization in species with broad and narrow niches.


Assuntos
Adaptação Biológica/fisiologia , Ecologia/métodos , Ecossistema , Lynx/fisiologia , Modelos Biológicos , Animais , Área Sob a Curva , Comportamento Alimentar/fisiologia , Geografia , Densidade Demográfica , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...