Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32511380

RESUMO

The ongoing Corona Virus Disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has emphasized the urgent need for antiviral therapeutics. The viral RNA-dependent-RNA-polymerase (RdRp) is a promising target with polymerase inhibitors successfully used for the treatment of several viral diseases. Here we show that Favipiravir exerts an antiviral effect as a nucleotide analogue through a combination of chain termination, slowed RNA synthesis and lethal mutagenesis. The SARS-CoV RdRp complex is at least 10-fold more active than any other viral RdRp known. It possesses both unusually high nucleotide incorporation rates and high-error rates allowing facile insertion of Favipiravir into viral RNA, provoking C-to-U and G-to-A transitions in the already low cytosine content SARS-CoV-2 genome. The coronavirus RdRp complex represents an Achilles heel for SARS-CoV, supporting nucleoside analogues as promising candidates for the treatment of COVID-19.

2.
Protein Sci ; 6(4): 794-807, 1997 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9098889

RESUMO

Ca(2+)-activated calmodulin (CaM) regulates many target enzymes by docking to an amphiphilic target helix of variable sequence. This study compares the equilibrium Ca2+ binding and Ca2+ dissociation kinetics of CaM complexed to target peptides derived from five different CaM-regulated proteins: phosphorylase kinase. CaM-dependent protein kinase II, skeletal and smooth myosin light chain kinases, and the plasma membrane Ca(2+)-ATPase. The results reveal that different target peptides can tune the Ca2+ binding affinities and kinetics of the two CaM domains over a wide range of Ca2+ concentrations and time scales. The five peptides increase the Ca2+ affinity of the N-terminal regulatory domain from 14- to 350-fold and slow its Ca2+ dissociation kinetics from 60- to 140-fold. Smaller effects are observed for the C-terminal domain, where peptides increase the apparent Ca2+ affinity 8- to 100-fold and slow dissociation kinetics 13- to 132-fold. In full-length skeletal myosin light chain kinase the inter-molecular tuning provided by the isolated target peptide is further modulated by other tuning interactions, resulting in a CaM-protein complex that has a 10-fold lower Ca2+ affinity than the analogous CaM-peptide complex. Unlike the CaM-peptide complexes, Ca2+ dissociation from the protein complex follows monoexponential kinetics in which all four Ca2+ ions dissociate at a rate comparable to the slow rate observed in the peptide complex. The two Ca2+ ions bound to the CaM N-terminal domain are substantially occluded in the CaM-protein complex. Overall, the results indicate that the cellular activation of myosin light chain kinase is likely to be triggered by the binding of free Ca2(2+)-CaM or Ca4(2+)-CaM after a Ca2+ signal has begun and that inactivation of the complex is initiated by a single rate-limiting event, which is proposed to be either the direct dissociation of Ca2+ ions from the bound C-terminal domain or the dissociation of Ca2+ loaded C-terminal domain from skMLCK. The observed target-induced variations in Ca2+ affinities and dissociation rates could serve to tune CaM activation and inactivation for different cellular pathways, and also must counterbalance the variable energetic costs of driving the activating conformational change in different target enzymes.


Assuntos
Cálcio/metabolismo , Calmodulina/química , Peptídeos/química , Proteínas Quinases/metabolismo , Sequência de Aminoácidos , Calmodulina/metabolismo , Ativação Enzimática , Cinética , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
5.
Biochemistry ; 29(13): 3256-62, 1990 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-2185834

RESUMO

The structure and function of the membrane-bound D-lactate dehydrogenase of Escherichia coli have been investigated by fluorine-19 nuclear magnetic resonance spectroscopy of 5-fluorotryptophan-labeled enzyme in conjunction with oligonucleotide-directed, site-specific mutagenesis. 5-Fluorotryptophan has been substituted for nine phenylalanine, tyrosine, and leucine residues in the enzyme molecule without loss of activity. The 19F signals from these additional tryptophan residues have been used as markers for sensitivity to substrate, exposure to aqueous solvent, and proximity to a lipid-bound spin-label. The nuclear magnetic resonance data show that two mutational sites, at amino acid residues 340 and 361, are near the lipid environment used to stabilize the enzyme. There are a number of amino acid residues on the carboxyl side of this region that are strongly sensitive to the aqueous solvent. The environment of the wild-type tryptophan residue at position 469 changes as a result of two of the substitution mutations, suggesting some amino acid residue-residue interactions. Secondary structure prediction methods indicate a possible binding site for the flavin adenine dinucleotide cofactor in the carboxyl end of the enzyme molecule. These results suggest that the membrane-bound D-lactate dehydrogenase may have the two-domain structure of many cytoplasmic dehydrogenases but with the addition of a membrane-binding domain between the catalytic and cofactor-binding domains. This type of three-domain structure may be of general significance for understanding the structure of membrane-bound proteins which do not traverse the lipid bilayer of membranes.


Assuntos
Escherichia coli/enzimologia , Corantes Fluorescentes , L-Lactato Desidrogenase , Triptofano/análogos & derivados , Sequência de Aminoácidos , Escherichia coli/genética , Expressão Gênica , Cinética , L-Lactato Desidrogenase/genética , Espectroscopia de Ressonância Magnética/métodos , Dados de Sequência Molecular , Mutação , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...